Citation: Luo Shuchang, Fan Guangding, Zheng Pengfei, Sun Xiaoyuan, Liu Hong, Liu Xiangyu. Family of Oxygen Bridged Dinuclear GdNi Complexes: Theoretical Magneto-Structural Studies[J]. Chemistry, ;2018, 81(8): 698-704. shu

Family of Oxygen Bridged Dinuclear GdNi Complexes: Theoretical Magneto-Structural Studies

  • Received Date: 16 March 2018
    Accepted Date: 22 May 2018

Figures(6)

  • The magnetic properties of dinuclear GdNi complex[Ni(3-MeOsaltn)(MeOH) (ac)Gd(hfac)2]were studied using DFT-BS by several DFT methods and basis sets. These calculations have been performed by incorporating relativistic effects via the Douglas-Kroll-Hess method (level Ⅱ). The calculated magnetic coupling constants using the B3LYP showed an excellent agreement with the experimental parameters, and could accurately describe the magnetic properties of dinuclear GdNi complexes. The analysis of magnetic orbitals and the spin density showed that the spin delocalization is from Ni and spin polarization is from Gd, magnetic orbitals principal constituents are 4fxyz and 4fz2x of Gd, 3dz2 and 3dx2-y2 of Ni and 2pz of the oxygen bridge (phenolato and acetato). With the increase of Gd-O-Ni bond angle, the square deviation of the paramagnetic center HS state and the BS state spin density and the contribution of antiferromagnetic interaction decrease, but the magnetic coupling constant of the complex increases.
  • 加载中
    1. [1]

      N K Dutt, K Nag. Inorg. Nucl. Chem., 1968, 30(10):2493~2499. 

    2. [2]

      Q W Xie, S Q Wu, C M Liu et al. Dalton Transac., 2013, 42(31):11227~11223. 

    3. [3]

      J P Costes, L Vendier. Eur. J. Inorg. Chem., 2010, (18):2768~2773.

    4. [4]

      N Ahmed, C Das, S Vaidya et al. Chem. Eur. J., 2014, 20(44):14235~14239. 

    5. [5]

      A Upadhyay, N Komatireddy, A Ghirri et al. Dalton Transac., 2013, 43(1):259~266. 

    6. [6]

      M Towatari, K Nishi, T Fujinami et al. Inorg. Chem., 2013, 52(10):6160~6178. 

    7. [7]

      L Jiang, Y Liu, X Liu et al. Dalton Transac., 2017, 46(37):12558~12573. 

    8. [8]

      V Vieru, T D Pasatoiu, L Ungur et al. Inorg. Chem., 2016, 55(23):12158~12171. 

    9. [9]

      M X Yao, Z X Zhu, X Y Lu et al. Dalton Transac., 2016, 45(26):10689~10695. 

    10. [10]

      T Gupta, M F Beg, G Rajaraman. Inorg. Chem., 2016, 55(21):11201~11215. 

    11. [11]

      M Maity, M C Majee, S Kundu et al. Inorg. Chem., 2015, 54(20):9715~9726. 

    12. [12]

      P E Moreno, N F Chilton, F Tuna et al. Inorg. Chem., 2015, 54(12):5930~5941. 

    13. [13]

      A A Patrascu, S Calancea, M Briganti et al. Chem. Commun., 2017, 53(48):6504~6507. 

    14. [14]

      W K Dong, J C Ma, Y J Dong et al. Polyhedron, 2016, 115:228~235. 

    15. [15]

      L X Zhou, J Q Xu, Y Q Zheng et al. J. Coord. Chem., 2017, 70(19):1~26.

    16. [16]

      J P Costes, F Dahan, A Dupuis et al. Inorg. Chem., 1997, 36(16):3429~3433. 

    17. [17]

      O Roubeau, G Lorusso, S J Teat et al. Dalton Transac., 2014, 43(30):11502-11509. 

    18. [18]

      E Colacio, J Ruiz, A J Mota et al. Inorg. Chem., 2012, 51(10):5857~5868. 

    19. [19]

      Q Y Chen, Q H Luo, L M Zheng et al. Inorg. Chem., 2002, 41(3):605~609. 

    20. [20]

      T D Pasatoiu, J P Sutter, A M Madalan et al. Inorg. Chem., 2011, 50(13):5890~5898. 

    21. [21]

      S K Singh, N K Tibrewal, G Rajaraman. Dalton Transac., 2011, 40(41):10897~10906. 

    22. [22]

      J Paulovič, F Cimpoesu, M Ferbinteanu et al. J. Am. Chem. Soc., 2004, 126(10):3321~3331. 

    23. [23]

      X L Li, F Y Min, C Wang et al. Inorg. Chem., 2015, 54(9):4337~4344. 

    24. [24]

      E Cremades, S Gómez-coca, D Aravena et al. J. Am. Chem. Soc., 2012, 134(25):10532~10542. 

    25. [25]

      J P Costes, F Dahan, A Dupuis et al. Inorg. Chem. 1997, 36:4284~4286. 

    26. [26]

      S K Singh, T Rajeshkumar, V Chandrasekhar et al. Polyhedron, 2013, 66(1):81~86. 

    27. [27]

       

    28. [28]

      F Neese. WIREs Comput. Mol. Sci., 2012, 2(1):73~78. 

    29. [29]

      F Neese. J. Phys. Chem. Solids, 2004, 65(4):781~785. 

    30. [30]

       

    31. [31]

       

    32. [32]

      W Humphrey, A Dalke, K Schulten. J. Molec. Graphics, 1996, 14(1):33~38. 

    33. [33]

      D A Pantazis, F Neese. J. Chem. Theory Comput., 2009, 5(9):2229~2238. 

    34. [34]

       

    35. [35]

      J Y Bian, Y F Chang, J P Zhang. J. Phys. Chem. A, 2008, 112(14):3186~3191. 

    36. [36]

       

    37. [37]

      F Yan, Z D Chen. J. Phys. Chem. A, 2000, 104(26):6295~6300. 

    38. [38]

      F Illas, R Caballol, O Castell et al. J. Phys. Chem. A, 1997, 101(42):7860~7866. 

    39. [39]

      E Ruiz, J Cano, S Alvarez et al. J. Comp. Chem., 1999, 20(13):1391~1400. 

    40. [40]

      T Cauchy, E Ruiz, S Alvarez. J. Am. Chem. Soc., 2006, 128(49):15722~15727. 

    41. [41]

      Y Q Zhang, C L Luo. Eur. J. Inorg. Chem., 2008(13):2199~2206.

  • 加载中
    1. [1]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    7. [7]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

Metrics
  • PDF Downloads(12)
  • Abstract views(931)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return