Citation: ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1520-1529. shu

Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion

  • Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn; qlu@ncepu.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 1 October 2020

    Fund Project: Grants from Fok Ying Tung Education Foundation 161051the National Natural Science Foundation of China 51922040Fundamental Research Funds for the Central Universities 2020DF01The project was supported by the National Natural Science Foundation of China (51922040, 51876060), Grants from Fok Ying Tung Education Foundation (161051) and Fundamental Research Funds for the Central Universities (2020DF01)the National Natural Science Foundation of China 51876060

Figures(15)

  • Calcium oxide (CaO) has been widely used as an adsorbent in the purification of heavy metals in coal-fired flue gas. However, the adsorption efficiency is limited and a further modification is needed. The cerium (Ce) modification can redistribute the surface electrons and enhance the chemical activity of CaO. Therefore, the Ce-CaO (100) periodic model was established to study the adsorption mechanism of mercury, selenium, and lead pollutants in the coal-fired flue gas. The results show that, except for the physical adsorption of Hg0 on the Ce-CaO (100) surface, the other heavy metal pollutants are chemically adsorbed on the surface. The Ce-site and O-site are the main active adsorption sites of heavy metal pollutants. Intense charge transfer and strong interaction are observed between adsorption molecules and Ce-CaO (100). Moreover, the adsorption capacity of Ce-doped CaO (100) surface for heavy metal pollutants has been improved, especially the significantly increased capture capacity on Se0, SeO2 and HgCl2.
  • 加载中
    1. [1]

      DENG S, SHI Y, LIU Y, CHEN Z, WANG X F, CAO Q, LI S G, ZHANG F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China[J]. Fuel Process Technol, 2014,126:469-475.

    2. [2]

      GUO Sheng-li. Study on migration and transformation characteristics of heavy metals in coal combustion and its pollution control[D]. Chongqing: Chongqing University, 2014.

    3. [3]

      QIAO Gang-jie, LIU Xuan, ZHAO Yuan-cai, LIU Hong-gang, KONG Fan-rong, ZHANG Kai. Progress in emission and control of typical heavy metals in coal-fired power plants[J]. Power Plant Syst Eng, 2020,36(2):1-4+8.

    4. [4]

      ZHANG Y L, ZHAO Y C, YANG Y J, LIU P F, LIU J, ZHANG J Y. DFT study on Hg0 adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni)[J]. Appl Surf Sci, 2020,525146519.

    5. [5]

      YOO J M, KIM B S, LEE J C, KIM M S, NAM C W. Kinetics of the volatilization removal of lead in electric arc furnace dust[J]. Mater Trans, 2005,46(2):323-328.

    6. [6]

      YANG Y J, LIU J, WANG Z, MIAO S, DING J Y, YU Y N, ZHANG J C. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. J Hazard Mater, 2019,373:660-670.

    7. [7]

      MCNUTT M. Mercury and health[J]. Sci, 2013,341:1430-1430.

    8. [8]

      YANG J P, ZHAO Y C, MA S M, ZHU B B, ZHANG J Y, ZHENG C G. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environ Sci Technol, 2016,50(21):12040-12047.

    9. [9]

      HOU W H, ZHOU J S, QI P, GAO X, LUO Z Y. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chem Eng J, 2014,241:131-137.

    10. [10]

      FAN Y M, ZHOU Y Q, ZHU Z W, DU W, LI L L. Zerovalent selenium adsorption mechanisms on CaO surface: DFT calculation and experimental study[J]. J Phys Chem A, 2017,121(39):7385-7392.

    11. [11]

      FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.

    12. [12]

      XING J Y, WANG C B, ZOU C, ZHANG Y. DFT study of Se and SeO2 adsorbed on CaO (0 0 1) surface: Role of oxygen[J]. Appl Surf Sci, 2020,510145488.

    13. [13]

      CHENG J F, ZENG H C, ZHANG Z H, XU M H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion[J]. Int J Energy Res, 2001,25(12):1043-1052.

    14. [14]

      CLARKE L B. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel, 1993,72(6):731-736.

    15. [15]

      GHOSHDASTIDAR A, MAHULI S K, AGNIHOTRI R, FAN L. Selenium capture using sorbent powders: mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996,30(2):447-452.

    16. [16]

      WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999,38(8):1833-1849.

    17. [17]

      WANG J, XIA S, YU L. Adsorption of Pb (Ⅱ) on the kaolinite (001) surface in aqueous system: A DFT approach[J]. Appl Surf Sci, 2015,339:28-35.

    18. [18]

      LOEF M, MENDOZA L F, WALACH H. Lead (Pb) and the risk of Alzheimer's disease or cognitive decline: A systematic review[J]. Toxin Rev, 2011,30(4):103-114.

    19. [19]

      NAVASACIEN A, GUALLAR E, SILBERGELD E K, ROTHENBERG S J. Lead exposure and cardiovascular disease-A systematic review[J]. Environ Health Perspect, 2007,115(3):472-482.

    20. [20]

      MARKUS J, MCBRATNEY A B. A review of the contamination of soil with lead: Ⅱ. Spatial distribution and risk assessment of soil lead[J]. Environ Int, 2001,27(5):399-411.

    21. [21]

      MA Xiao-wen, LI Jian-jun. Research progress of heavy metal pollution and control technology in coal-fired power plants[J]. Sichuan Chem Eng, 2019,22(1):5-8.

    22. [22]

      GUO Sheng-li, LI Wei-dong, GENG Wei-le, ZHANG Jian. Emission control of heavy metals As, Cd, and Zn from coal combustion by calcined calcium carbonate[J]. Acta Coal Sin, 2015,40(12):2967-2973.

    23. [23]

      LIU Jing, ZHENG Chu-guang, ZENG Han-cai, ZHANG Jun-ying, LU Xiao-hua. Experimental study on controlling heavy metal emission from coal combustion with solid adsorbents[J]. Environ Sci, 2003,24(5):23-27.

    24. [24]

      LI Ming-hui. Mechanism of arsenic adsorption on unburned carbon and calcium oxide in fly ash[D]. Beijing: North China Electric Power University, 2019.

    25. [25]

      SUN Xiao, QIAN Feng, WEI Xin-xian, YAN Jun. Effect of CaO addition on enrichment of heavy metals in coal combustion[J]. Chem Environ Prot, 2016,36(2):205-210.

    26. [26]

      WU Han. Modification of CaO based CO2 adsorbent[D]. Shanghai: East China University of science and technology, 2013.

    27. [27]

      LANG J H, HAN Q, YANG J H, LI C S, YANG L L, ZHANG Y J, GAO M, WANG D D, CAO J. Fabrication and optical properties of Ce-doped ZnO nanorods[J]. J Appl Phys, 2010,107074302.

    28. [28]

      DONG X, LIN Y C, MA Y Q, ZHAO L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes[J]. R Soc Chem, 2019,927674.

    29. [29]

      LU H, KHAN A, PRATSINIS S E, SMINRNIOTIS P G. Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy Fuels, 2009,23(2):1093-1100.

    30. [30]

      ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Micro mechanism of calcium on heterogeneous reduction of no by coke: DFT study[J]. Acta Fuel Chem, 2020,48(2):163-171.

    31. [31]

      YUAN Shu-ping, WANG Jian-guo, LI Yong-wang, PENG Shao-yi. DFT Study on the substitution sites of Fe in mordenite framework[J]. Acta Fuel Chem, 2001,29(S1):252-254.

    32. [32]

      LIU L, HONG D, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util, 2017,22:155-163.

    33. [33]

      FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.

    34. [34]

      FAN Y M, YAO J G, ZHANG Z L, SCEATS M, ZHUO Y Q, LI L L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018,169:24-41.

    35. [35]

      LI Z P, NIU S L, ZHAO G J, HAN K H, LI Y J, LU C M, CHENG S. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020,48(2):172-178.

    36. [36]

      ESRAFILI M D, NEMATOLLAHI P, ABDOLLAHPOUR H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts[J]. Appl Surf Sci, 2016,378:418-425.

    37. [37]

      RAHMATHULLA S S, SIRAJUDDEEN M M S. Nitrogen induced half metallic ferromagnetism in oxides of calcium and cadmium: A DFT perspective[J]. Mater Chem Phys, 2020,243122336.

    38. [38]

      DAI W, SHUI Z H, LI K. First-principle investigations of CaO (100) surface and adsorption of H2O on CaO (100)[J]. Comput Theor Chem, 2011,967(1):185-190.

    39. [39]

      GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO (100)[J]. Fuel, 2017,197:541-550.

    40. [40]

      CHAKRADHAR A, LIU Y, SCHMIDT J, KADOSSOV E, BURGHAUS U. Adsorption and dissociation kinetics of alkanes on CaO (100)[J]. Surf Sci, 2011,605(15/16):1537-1543.

    41. [41]

      WANG W J, FAN L L, WANG G P, LI Y H. CO2 and SO2 sorption on the alkali metals doped CaO (100) surface: A DFT-D study[J]. Appl Surf Sci, 2017,425:972-977.

    42. [42]

      YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHENG Liang. Theoretical study on the effect of H2O on SO2 adsorption on CaO surface[J]. Acta Fuel Chem, 2019,47(10):1163-1172.

    43. [43]

      XU Qing, CHENG Da-zhi. Density functional theory study on the effect of intrinsic O vacancy defects on formaldehyde adsorption on ZnO surface[J]. Appl Phys, 2020,10(6)8.

    44. [44]

      MILMAN V, REFSON K, CLARK S J, PICKARD C J, YATES J R, GAO S P, HASNIP P J, PROBERT M I J, PERLOV A, SEGALL M D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation[J]. J Mol Struct: THEOCHEM, 2010,954(1/3):22-35.

    45. [45]

      CHEN H, CHOI Y, LIU M L, LIN M C. A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2[J]. Chem Phys Chem, 2007,8(6):849-855.

    46. [46]

      LOSCHEN C, CARRASCO J, NEYMAN K M, ILLAS F. First-principles LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter[J]. Phys Rev B, 2007,75(3)035115.

    47. [47]

      WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999,38(8).

    48. [48]

      XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proc Combust Inst, 2009,32(2):2693-2699.

    49. [49]

      FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    17. [17]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(6)
  • Abstract views(952)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return