Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion
- Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn; qlu@ncepu.edu.cn
Citation:
ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(12): 1520-1529.
DENG S, SHI Y, LIU Y, CHEN Z, WANG X F, CAO Q, LI S G, ZHANG F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China[J]. Fuel Process Technol, 2014,126:469-475.
GUO Sheng-li. Study on migration and transformation characteristics of heavy metals in coal combustion and its pollution control[D]. Chongqing: Chongqing University, 2014.
QIAO Gang-jie, LIU Xuan, ZHAO Yuan-cai, LIU Hong-gang, KONG Fan-rong, ZHANG Kai. Progress in emission and control of typical heavy metals in coal-fired power plants[J]. Power Plant Syst Eng, 2020,36(2):1-4+8.
ZHANG Y L, ZHAO Y C, YANG Y J, LIU P F, LIU J, ZHANG J Y. DFT study on Hg0 adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni)[J]. Appl Surf Sci, 2020,525146519.
YOO J M, KIM B S, LEE J C, KIM M S, NAM C W. Kinetics of the volatilization removal of lead in electric arc furnace dust[J]. Mater Trans, 2005,46(2):323-328.
YANG Y J, LIU J, WANG Z, MIAO S, DING J Y, YU Y N, ZHANG J C. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. J Hazard Mater, 2019,373:660-670.
MCNUTT M. Mercury and health[J]. Sci, 2013,341:1430-1430.
YANG J P, ZHAO Y C, MA S M, ZHU B B, ZHANG J Y, ZHENG C G. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environ Sci Technol, 2016,50(21):12040-12047.
HOU W H, ZHOU J S, QI P, GAO X, LUO Z Y. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chem Eng J, 2014,241:131-137.
FAN Y M, ZHOU Y Q, ZHU Z W, DU W, LI L L. Zerovalent selenium adsorption mechanisms on CaO surface: DFT calculation and experimental study[J]. J Phys Chem A, 2017,121(39):7385-7392.
FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.
XING J Y, WANG C B, ZOU C, ZHANG Y. DFT study of Se and SeO2 adsorbed on CaO (0 0 1) surface: Role of oxygen[J]. Appl Surf Sci, 2020,510145488.
CHENG J F, ZENG H C, ZHANG Z H, XU M H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion[J]. Int J Energy Res, 2001,25(12):1043-1052.
CLARKE L B. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel, 1993,72(6):731-736.
GHOSHDASTIDAR A, MAHULI S K, AGNIHOTRI R, FAN L. Selenium capture using sorbent powders: mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996,30(2):447-452.
WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999,38(8):1833-1849.
WANG J, XIA S, YU L. Adsorption of Pb (Ⅱ) on the kaolinite (001) surface in aqueous system: A DFT approach[J]. Appl Surf Sci, 2015,339:28-35.
LOEF M, MENDOZA L F, WALACH H. Lead (Pb) and the risk of Alzheimer's disease or cognitive decline: A systematic review[J]. Toxin Rev, 2011,30(4):103-114.
NAVASACIEN A, GUALLAR E, SILBERGELD E K, ROTHENBERG S J. Lead exposure and cardiovascular disease-A systematic review[J]. Environ Health Perspect, 2007,115(3):472-482.
MARKUS J, MCBRATNEY A B. A review of the contamination of soil with lead: Ⅱ. Spatial distribution and risk assessment of soil lead[J]. Environ Int, 2001,27(5):399-411.
MA Xiao-wen, LI Jian-jun. Research progress of heavy metal pollution and control technology in coal-fired power plants[J]. Sichuan Chem Eng, 2019,22(1):5-8.
GUO Sheng-li, LI Wei-dong, GENG Wei-le, ZHANG Jian. Emission control of heavy metals As, Cd, and Zn from coal combustion by calcined calcium carbonate[J]. Acta Coal Sin, 2015,40(12):2967-2973.
LIU Jing, ZHENG Chu-guang, ZENG Han-cai, ZHANG Jun-ying, LU Xiao-hua. Experimental study on controlling heavy metal emission from coal combustion with solid adsorbents[J]. Environ Sci, 2003,24(5):23-27.
LI Ming-hui. Mechanism of arsenic adsorption on unburned carbon and calcium oxide in fly ash[D]. Beijing: North China Electric Power University, 2019.
SUN Xiao, QIAN Feng, WEI Xin-xian, YAN Jun. Effect of CaO addition on enrichment of heavy metals in coal combustion[J]. Chem Environ Prot, 2016,36(2):205-210.
WU Han. Modification of CaO based CO2 adsorbent[D]. Shanghai: East China University of science and technology, 2013.
LANG J H, HAN Q, YANG J H, LI C S, YANG L L, ZHANG Y J, GAO M, WANG D D, CAO J. Fabrication and optical properties of Ce-doped ZnO nanorods[J]. J Appl Phys, 2010,107074302.
DONG X, LIN Y C, MA Y Q, ZHAO L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes[J]. R Soc Chem, 2019,927674.
LU H, KHAN A, PRATSINIS S E, SMINRNIOTIS P G. Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy Fuels, 2009,23(2):1093-1100.
ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Micro mechanism of calcium on heterogeneous reduction of no by coke: DFT study[J]. Acta Fuel Chem, 2020,48(2):163-171.
YUAN Shu-ping, WANG Jian-guo, LI Yong-wang, PENG Shao-yi. DFT Study on the substitution sites of Fe in mordenite framework[J]. Acta Fuel Chem, 2001,29(S1):252-254.
LIU L, HONG D, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util, 2017,22:155-163.
FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.
FAN Y M, YAO J G, ZHANG Z L, SCEATS M, ZHUO Y Q, LI L L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018,169:24-41.
LI Z P, NIU S L, ZHAO G J, HAN K H, LI Y J, LU C M, CHENG S. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020,48(2):172-178.
ESRAFILI M D, NEMATOLLAHI P, ABDOLLAHPOUR H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts[J]. Appl Surf Sci, 2016,378:418-425.
RAHMATHULLA S S, SIRAJUDDEEN M M S. Nitrogen induced half metallic ferromagnetism in oxides of calcium and cadmium: A DFT perspective[J]. Mater Chem Phys, 2020,243122336.
DAI W, SHUI Z H, LI K. First-principle investigations of CaO (100) surface and adsorption of H2O on CaO (100)[J]. Comput Theor Chem, 2011,967(1):185-190.
GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO (100)[J]. Fuel, 2017,197:541-550.
CHAKRADHAR A, LIU Y, SCHMIDT J, KADOSSOV E, BURGHAUS U. Adsorption and dissociation kinetics of alkanes on CaO (100)[J]. Surf Sci, 2011,605(15/16):1537-1543.
WANG W J, FAN L L, WANG G P, LI Y H. CO2 and SO2 sorption on the alkali metals doped CaO (100) surface: A DFT-D study[J]. Appl Surf Sci, 2017,425:972-977.
YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHENG Liang. Theoretical study on the effect of H2O on SO2 adsorption on CaO surface[J]. Acta Fuel Chem, 2019,47(10):1163-1172.
XU Qing, CHENG Da-zhi. Density functional theory study on the effect of intrinsic O vacancy defects on formaldehyde adsorption on ZnO surface[J]. Appl Phys, 2020,10(6)8.
MILMAN V, REFSON K, CLARK S J, PICKARD C J, YATES J R, GAO S P, HASNIP P J, PROBERT M I J, PERLOV A, SEGALL M D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation[J]. J Mol Struct: THEOCHEM, 2010,954(1/3):22-35.
CHEN H, CHOI Y, LIU M L, LIN M C. A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2[J]. Chem Phys Chem, 2007,8(6):849-855.
LOSCHEN C, CARRASCO J, NEYMAN K M, ILLAS F. First-principles LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter[J]. Phys Rev B, 2007,75(3)035115.
WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999,38(8).
XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proc Combust Inst, 2009,32(2):2693-2699.
FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
Yutao Lu , Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
(a): 1F; (b): 1G; (c): 1L
4: O represents the O atom of HgO molecule
(a): 1F; (b): 1G; (c): 1L
(a): 2B; (b): 2F 6: O represents the O atom of SeO2 molecule
(a): 2B; (b): 2F
(a): 3A; (b): 3D
(a): 3A; (b): 3D