Citation: YAN Jie, ZHAO Yun-peng, XIAO Jian, TIAN You-jia. Thermal dissolution of Shengli and Xiaolongtan lignites in methanol and analysis of the soluble portions[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 15-22. shu

Thermal dissolution of Shengli and Xiaolongtan lignites in methanol and analysis of the soluble portions

  • Corresponding author: ZHAO Yun-peng, yunpengzhao2009@163.com
  • Received Date: 7 July 2015
    Revised Date: 29 September 2015

    Fund Project: China Postdoctoral Science Foundation 2012M511339The project was supported by National Natural Science Foundation of China 21206188

Figures(7)

  • Thermal dissolution behaviors of Shengli (SL) and Xiaolongtan (XLT) lignite in methanol were investigated. The composition and structural characteristics of soluble portions (SPs) obtained at 320 ℃ were characterized with Fourier transform infrared spectroscopy, gas chromatograph /mass spectrometer (GC/MS) and atmospheric solid analysis probe/time of flight mass spectrometer (ASAP/TOF-MS). For the two lignites, the yield of SPs increase with temperature increasing, while the yield of SPs from XLT (SPXLT) is obvious higher than that from SL (SPSL) above 240 ℃. GC/MS analysis results show that compounds in the SPs are dominated in oxygen-containing organic species, especially the relative content of phenols is higher than 49%. The relative contents of alkenes, arenes, ethers, carboxylic acids, esters, organosulfur compounds (OSCs) in SPSL are higher, while the relative contents of alkanes, phenols, ketones and organonitrogen compounds in SPSL are lower than those in SPXLT. Additionally, the OSCs in SPSL and SPXLT are mainly composed of thiophenes and mercaptan, respectively. Many compounds with high polarity and low volatility which could not be identified by GC/MS were identified using ASAP/TOF-MS. The relative contents of CHO and CHS class species in SPSL are higher, but the relative contents of CHN, CHNO, CHOS, CHNS and CHNOS in SPSL are lower than those in SPXLT. The carbon number and double bond equivalent (DBE) of the compounds in SPSL and SPXLT mainly distribute in 0-10 and 3-15, respectively, while the distribution of carbon number and DBE of the compound in SPXLT are more concentrated than those in SPSL.
  • 加载中
    1. [1]

      LI XH, XUE Y L, FENG J, YI Q, LI W Y, GUO X F, LIU K. Co-pyrolysis of lignite and shendong coal direct liquefaction residue[J]. Fuel, 2015,144(15):345-348.  

    2. [2]

      ASHIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractional of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009,88(8):1485-1490. doi: 10.1016/j.fuel.2008.12.003

    3. [3]

      MAE K, SHINDO H, MIURA K. A new two-step oxidation degradation method for produceing valuable chemicals from low rank coals under mild conditions[J]. Energy Fuels, 2001,15(3):611-617. doi: 10.1021/ef000177e

    4. [4]

      WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol, 2011,39(6):401-406. doi: 10.1016/S1872-5813(11)60027-3 

    5. [5]

      PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of thermal dissolution products of a subbituminous coal at different temperatures[J]. J Fuel Chem Technol, 2015,43(4):416-421.  

    6. [6]

      DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction of thermal dissolution of shengli lignite[J]. Fuel Process Technol, 2015,135(7):20-24.  

    7. [7]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    8. [8]

      CHEN B, WEI X Y, ZONG Z M, YANG Z S, QING Y, LIU C. Difference in chemical composition of supercritical methanolysis products between two lignites[J]. Appl Energy, 2011,88(12):4570-4576. doi: 10.1016/j.apenergy.2011.05.052

    9. [9]

      GIVEN P H, MARZEC A, BARTON W A, LYNCH L J, GERSTEIN B C. The concept of a mobile or molecular phase within the macromolecular network of coal: A debate[J]. Fuel, 1986,65(2):155-163. doi: 10.1016/0016-2361(86)90001-3

    10. [10]

      ZHAO Y P, HU H Q, JIN L J, WU B, ZHU S W. Pyrolysis behavior of weakly reductive coals from Northwest China[J]. Energy Fuels, 2009,23(2):870-875. doi: 10.1021/ef800831y

    11. [11]

      PAN Chun-xiu, WEI Xian-yong, LI Han-qing, SHUI Heng-fu, WANG Zhi-cai, ZHU Wan-wan, ZHAO Zhi-jun, ZONG Zhi-min. H2O2 oxidation of Xianfeng lignite and its thermal extraction residue[J]. J Fuel Chem Technol, 2013,41(12):1415-1421.  

    12. [12]

      HODEK W, KIRSCHSTEIN J, VAN HEEK K H. Reactions of oxygen containing structures in coal pyrolysis[J]. Fuel, 1991,70(3):424-428. doi: 10.1016/0016-2361(91)90133-U

    13. [13]

      LI D, ZHANG C, XIA J, TAN P, YANG L, CHEN G. Evolution of organic sulfur in the thermal upgrading process of Shengli lignite[J]. Energy Fuels, 2013,27(7):3446-3453.  

    14. [14]

      LI P, ZONG Z M, LIU F J, WANG Y G, WEI X Y, FAN X, ZHAO Y P, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol, 2015,136(8):1-7.  

    15. [15]

      LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol, 2015,136(8):8-16.  

    16. [16]

      HOURANI N, MULLER H, ADAM F M, PANA S K, WITT M, AL-HAJJJ A A, SARATHY S M. Structural level characterization of base oils using advanced analytical techniques[J]. Energy Fuels, 2015,29(5):2962-2970. doi: 10.1021/acs.energyfuels.5b00038

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    12. [12]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    13. [13]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    17. [17]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(0)
  • Abstract views(901)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return