Citation: YAN Jie, ZHAO Yun-peng, XIAO Jian, TIAN You-jia. Thermal dissolution of Shengli and Xiaolongtan lignites in methanol and analysis of the soluble portions[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 15-22. shu

Thermal dissolution of Shengli and Xiaolongtan lignites in methanol and analysis of the soluble portions

  • Corresponding author: ZHAO Yun-peng, yunpengzhao2009@163.com
  • Received Date: 7 July 2015
    Revised Date: 29 September 2015

    Fund Project: China Postdoctoral Science Foundation 2012M511339The project was supported by National Natural Science Foundation of China 21206188

Figures(7)

  • Thermal dissolution behaviors of Shengli (SL) and Xiaolongtan (XLT) lignite in methanol were investigated. The composition and structural characteristics of soluble portions (SPs) obtained at 320 ℃ were characterized with Fourier transform infrared spectroscopy, gas chromatograph /mass spectrometer (GC/MS) and atmospheric solid analysis probe/time of flight mass spectrometer (ASAP/TOF-MS). For the two lignites, the yield of SPs increase with temperature increasing, while the yield of SPs from XLT (SPXLT) is obvious higher than that from SL (SPSL) above 240 ℃. GC/MS analysis results show that compounds in the SPs are dominated in oxygen-containing organic species, especially the relative content of phenols is higher than 49%. The relative contents of alkenes, arenes, ethers, carboxylic acids, esters, organosulfur compounds (OSCs) in SPSL are higher, while the relative contents of alkanes, phenols, ketones and organonitrogen compounds in SPSL are lower than those in SPXLT. Additionally, the OSCs in SPSL and SPXLT are mainly composed of thiophenes and mercaptan, respectively. Many compounds with high polarity and low volatility which could not be identified by GC/MS were identified using ASAP/TOF-MS. The relative contents of CHO and CHS class species in SPSL are higher, but the relative contents of CHN, CHNO, CHOS, CHNS and CHNOS in SPSL are lower than those in SPXLT. The carbon number and double bond equivalent (DBE) of the compounds in SPSL and SPXLT mainly distribute in 0-10 and 3-15, respectively, while the distribution of carbon number and DBE of the compound in SPXLT are more concentrated than those in SPSL.
  • 加载中
    1. [1]

      LI XH, XUE Y L, FENG J, YI Q, LI W Y, GUO X F, LIU K. Co-pyrolysis of lignite and shendong coal direct liquefaction residue[J]. Fuel, 2015,144(15):345-348.  

    2. [2]

      ASHIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractional of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009,88(8):1485-1490. doi: 10.1016/j.fuel.2008.12.003

    3. [3]

      MAE K, SHINDO H, MIURA K. A new two-step oxidation degradation method for produceing valuable chemicals from low rank coals under mild conditions[J]. Energy Fuels, 2001,15(3):611-617. doi: 10.1021/ef000177e

    4. [4]

      WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol, 2011,39(6):401-406. doi: 10.1016/S1872-5813(11)60027-3 

    5. [5]

      PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of thermal dissolution products of a subbituminous coal at different temperatures[J]. J Fuel Chem Technol, 2015,43(4):416-421.  

    6. [6]

      DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction of thermal dissolution of shengli lignite[J]. Fuel Process Technol, 2015,135(7):20-24.  

    7. [7]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    8. [8]

      CHEN B, WEI X Y, ZONG Z M, YANG Z S, QING Y, LIU C. Difference in chemical composition of supercritical methanolysis products between two lignites[J]. Appl Energy, 2011,88(12):4570-4576. doi: 10.1016/j.apenergy.2011.05.052

    9. [9]

      GIVEN P H, MARZEC A, BARTON W A, LYNCH L J, GERSTEIN B C. The concept of a mobile or molecular phase within the macromolecular network of coal: A debate[J]. Fuel, 1986,65(2):155-163. doi: 10.1016/0016-2361(86)90001-3

    10. [10]

      ZHAO Y P, HU H Q, JIN L J, WU B, ZHU S W. Pyrolysis behavior of weakly reductive coals from Northwest China[J]. Energy Fuels, 2009,23(2):870-875. doi: 10.1021/ef800831y

    11. [11]

      PAN Chun-xiu, WEI Xian-yong, LI Han-qing, SHUI Heng-fu, WANG Zhi-cai, ZHU Wan-wan, ZHAO Zhi-jun, ZONG Zhi-min. H2O2 oxidation of Xianfeng lignite and its thermal extraction residue[J]. J Fuel Chem Technol, 2013,41(12):1415-1421.  

    12. [12]

      HODEK W, KIRSCHSTEIN J, VAN HEEK K H. Reactions of oxygen containing structures in coal pyrolysis[J]. Fuel, 1991,70(3):424-428. doi: 10.1016/0016-2361(91)90133-U

    13. [13]

      LI D, ZHANG C, XIA J, TAN P, YANG L, CHEN G. Evolution of organic sulfur in the thermal upgrading process of Shengli lignite[J]. Energy Fuels, 2013,27(7):3446-3453.  

    14. [14]

      LI P, ZONG Z M, LIU F J, WANG Y G, WEI X Y, FAN X, ZHAO Y P, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol, 2015,136(8):1-7.  

    15. [15]

      LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol, 2015,136(8):8-16.  

    16. [16]

      HOURANI N, MULLER H, ADAM F M, PANA S K, WITT M, AL-HAJJJ A A, SARATHY S M. Structural level characterization of base oils using advanced analytical techniques[J]. Energy Fuels, 2015,29(5):2962-2970. doi: 10.1021/acs.energyfuels.5b00038

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    18. [18]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(0)
  • Abstract views(859)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return