Citation: NIU Ru-jie, WANG Cheng-zhang, LIU Xiao-yue, YI Chun-xiong, CHEN Liang, MI Tie, WU Zheng-shun. Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 92-97. shu

Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction

  • Corresponding author: WU Zheng-shun, wuzs@mail.cccnu.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 9 November 2018

    Fund Project: the Program of Introducing Talents of Discipline to University of China 111 programThe project was supported by National Natural Science Foundation of China (51676081), the Open Fund from Hubei Key Laboratory of Industrial Fume & Dust Pollution Control (HBIK2017-04) and the Program of Introducing Talents of Discipline to University of China(111 program, B17019)National Natural Science Foundation of China 51676081the Program of Introducing Talents of Discipline to University of China B17019the Open Fund from Hubei Key Laboratory of Industrial Fume & Dust Pollution Control HBIK2017-04

Figures(9)

  • BaZr0.9Y0.1O3 with perovskite structure was prepared by solid-phase reaction method and used as support to prepare Fe2O3 based catalysts. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were used to observe the crystal phase structure and microscopic morphology of the prepared catalysts. The catalyst performance for the reverse water gas shift reaction was also investigated. The results showed that the supported catalyst has better catalytic activity when the BaZr0.9Y0.1O3 powder was calcined at 1200℃ for 5 h. BaZr0.9Y0.1O3 has an obvious catalytic effect on the reverse water gas reaction, and the Fe2O3-supported catalyst can significantly promote CO2 reduction. Moreover, loading small amount of Fe2O3 has apparent effect on the reactivity of the catalyst. When the space velocity was 1.13 h-1, the CO yield can reach 31% at 650℃. Carbon deposition on the catalyst during the CO2 reduction process was taking place in a low rate, leading to a significant increase in the CO yield in the process of cooling-down experiment. In addition, the activity of the catalyst did not significantly decrease after a long period of reaction, which proved that the activity of the prepared catalyst was relatively stable.
  • 加载中
    1. [1]

      CHENG Wei. The theme of the national symposium of the American chemical society is the technology of CO2 conversion to fuel[J]. Pet Process Petrochem, 2014,45(1)76.  

    2. [2]

      DAZA Y A, KENT R A, YUNG M M, KUHN J N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind Eng Chem Res, 2014,53(14):5828-5837. doi: 10.1021/ie5002185

    3. [3]

      OSHIMA K, SHINAGAWA T, NOGAMI Y, MANBE R, OGO S, SEKINE Y. Low temperature catalytic reverse water gas shift reaction assisted by an electric field[J]. Catal Today, 2014,232:27-32. doi: 10.1016/j.cattod.2013.11.035

    4. [4]

      PETTIGREW D J, TRIMM D L. The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina[J]. Cataly Lett, 1994,28(2):313-319.  

    5. [5]

      GOGATE M R, DAVIS R J. Comparative study of CO and CO2, hydrogenation over supported Rh-Fe catalysts[J]. Catal Commun, 2010,11(10):901-906. doi: 10.1016/j.catcom.2010.03.020

    6. [6]

      KIM S S, PARK K H, HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Process Technol, 2013,108:47-54. doi: 10.1016/j.fuproc.2012.04.003

    7. [7]

      WANG X, SHI H, KWAK J H, SZANYI J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts:Kinetics and transient DRIFTS-MS studies[J]. ACS Catal, 2015,5(11):6337-6349. doi: 10.1021/acscatal.5b01464

    8. [8]

      LIU Y, LIU D. Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation[J]. Int J Hydrogen Energy, 1999,24(4):351-354. doi: 10.1016/S0360-3199(98)00038-X

    9. [9]

      RONDA-LLORET M, RICO-FRANCES S, SEPULVEDA-ESCRIBANO A, RAMOS-FERNANDEZ E V. CuO/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction[J]. Appl Catal A:Gen, 2018,562:28-36. doi: 10.1016/j.apcata.2018.05.024

    10. [10]

      HE Xiao-xiang, GU Xiong-yi, FAN Chen, ZHU Yi-an. DFT study of reverse water-gas shift reaction on Fe3O4 surface[J]. J East China Univ Sci Technol, 2011,37(4):424-429.  

    11. [11]

      DAI Bi-can, ZHOU Gui-lin. Perspective on catalyst investigation for reverse water-gas shift reaction (RWGS)[J]. Chem Ind Eng Process, 2017,36(7):2473-2480.  

    12. [12]

      LI Jun, CUI Feng-xia, LI Rong. Research progress on carbon dioxide reduction technology[J]. Spec Petrochem, 2017,34(2):75-82. doi: 10.3969/j.issn.1003-9384.2017.02.018

    13. [13]

      KIM D H, HAN S W, YOON H S, KIM Y D. Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability[J]. J Ind Eng Chem, 2015,23:67-71. doi: 10.1016/j.jiec.2014.07.043

    14. [14]

      ERTL G, KNOTZINGER H, SCHUTH F, WEITCAMP J. Handbook of Heterogeneous Catalysis[M]. Germany:VCH Publishers, 2007.

    15. [15]

      KIM D H, PARK J L, PARK E J, KIM Y D, Uhm S. Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction[J]. ACS Catal, 2014,4(9):3117-3122. doi: 10.1021/cs500476e

    16. [16]

      WANG Tong-Tong. Preparation of dual phase ceramic hollow fiber membranes and application in NH3 decomposition for hydrogen production[D]. Shandong: Shandong University of Technology.

    17. [17]

      CAO Jia-feng, ZHU Zhi-wen, LIU Wei. Review on perovskite electrolyte for proton-conducting solid oxide fuel cells[J]. J Chin Silic Soc, 2015,43(6):734-740.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

Metrics
  • PDF Downloads(7)
  • Abstract views(2837)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return