Citation: XIE Miao, XU Long-jun, HU Jin-feng, XU Yan-zhao. Effects of cathode catalyst modification on the performance of microbial fuel cells[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1275-1280. shu

Effects of cathode catalyst modification on the performance of microbial fuel cells

  • Corresponding author: XU Long-jun, xulj@cqu.edu.cn
  • Received Date: 21 March 2017
    Revised Date: 16 August 2017

    Fund Project: The project was supported by the key projects of basic and frontier research projects in Chongqing (CSTC, 2013jjB20001; CSTC, 2015jcyjBX0015)The project was supported by the key projects of basic and frontier research projects in Chongqing CSTC, 2015jcyjBX0015The project was supported by the key projects of basic and frontier research projects in Chongqing CSTC, 2013jjB20001

Figures(5)

  • Bio-cathode microbial fuel cells (MFCs) were modified with MnO2/rGO and Pt/C; the effects of cathode catalyst modification on the performance of microbial fuel cells in electricity production and aged landfill leachate treatment were investigated. The results show that the MFC modified with MnO2/rGO can significantly enhance the electricity production and the removal of contaminants. The MFC modified with 1.0 mg/cm2 MnO2/rGO exhibits a harvest voltage of 372 mV, power density of 194 mW/m3, chemical oxygen demand removal rate of 58.68%, and ammonia removal rate of 76.64%; such a performance is similar to that modified with Pt/C, but the cost is greatly reduced.
  • 加载中
    1. [1]

      OH S E, LOGAN B E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technology[J]. Water Res, 2005,39(19):4673-4682. doi: 10.1016/j.watres.2005.09.019

    2. [2]

      MIN B, KIM J, OH S E, REGAN J M, LOGAN B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Res, 2005,39(20):4961-4968. doi: 10.1016/j.watres.2005.09.039

    3. [3]

      WANG Xin, FENG Yu-Jie, QU You-peng, LI Dong-mei, LI He, REN Nan-qi. Effect of temperature on performance of microbial fuel cell using beer wastewater[J]. Environ Sci, 2008,29(11):3128-3132. doi: 10.3321/j.issn:0250-3301.2008.11.024

    4. [4]

      LU Na, ZHOU Ben, DENG Li-fang, ZHOU Shun-gui, NI Jin-ren. Starch processing wastewater treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst[J]. J Basic Sci Eng, 2009,17:65-72.

    5. [5]

      FAN Li-ping, MIAO Xiao-hui. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. J Fuel Chem Technol, 2014,42(12):1506-1512. doi: 10.3969/j.issn.0253-2409.2014.12.014

    6. [6]

      LI Y, LU A, DING H, WANG X, WANG C, ZENG C, YAN Y. Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate[J]. Electrochem Commun, 2010,12(7):944-947. doi: 10.1016/j.elecom.2010.04.027

    7. [7]

      KULIKOWSKA D, KLIMIUK E. The effect of landfill age on municipal leachate composition[J]. Bioresource Technol, 2008,99(13):5981-5985. doi: 10.1016/j.biortech.2007.10.015

    8. [8]

      KJELDSEN P, CHRISTOPHERSEN M. Composition of leachate from old landfills in Denmark[J]. Waste Manage Res, 2001,19(3):249-256. doi: 10.1177/0734242X0101900306

    9. [9]

      YOU S, ZHAO Q, JIANG J, ZHANG J, ZHAO S. Sustainable approach for leachate treatment:Electricity generation in microbial fuel cell[J]. J Environ Sci Heal A, 2006,41(12):2721-2734. doi: 10.1080/10934520600966284

    10. [10]

      LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat rev Microbiol, 2009,7(5):375-381. doi: 10.1038/nrmicro2113

    11. [11]

      LOGAN B E. Microbial fuel cells:methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016

    12. [12]

      RHOADS A, BEYENAL H, LEWANDOWSKI Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant[J]. Environ Sci Technol, 2005,39:4666-4671. doi: 10.1021/es048386r

    13. [13]

      ZHU Xue-yuan, FENG Ya-li, LI Shao-hua, LI Hao-ran, DU Zhu-wei, LUO Xiao-bing. Construction of a single-chamber direct microbial fuel cell and preparation of cathode electrode[J]. Chin J Process Eng, 2007,7(3):594-597.  

    14. [14]

      YUAN Hao-ran, DENG Li-fang, HUANG Hong-yu, XIAOLIN Jing-xing, CHEN Yong. Municipal solid waste(MSW) leachate treatment using MnO2-catalyzed microbial fuel cells[J]. Acta Energi Sin, 2014,35(9):1715-1722.

    15. [15]

      ZHANG L X, LIU C S, ZHUANG L, LI W, ZHOU S, ZHANG J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosens Bioelectron, 2009,24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010

    16. [16]

      PAN Dan-yun, REN Yue-ping, FU Fei, ZHAO Ya-nan, QIN Shi-zhong, LI Ji-fen. Effect of MnO2-r-GO modified cathode on the electricity generation performance of SMFC[J]. Environ Chem, 2013,32(4):531-536. doi: 10.7524/j.issn.0254-6108.2013.04.001

    17. [17]

      XIAO L, DAMIEN J, LUO J Y, HE Z. Crumpled graphene particles for microbial fuel cell electrodes[J]. J Power Sources, 2012,208:187-192. doi: 10.1016/j.jpowsour.2012.02.036

    18. [18]

      WEN Q, WANG S Y, YAN J, CONG L J, PAN Z C, REN Y M, FAN Z J. MnO2-graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Journal of Power Sources, 2012,216:187-191. doi: 10.1016/j.jpowsour.2012.05.023

    19. [19]

      WANG Ya-guang, HE Ze-qiang, LONG Qiu-ping, XIONG Li-zhi. Preparation and catalytic activity for cathodic oxygen reduction reaction in microbial fuel cell of MnO2@graphene composites[J]. Chin J of Nonferrous Met, 2016,26(12):2596-2604.

    20. [20]

      CHENG S, LIU H, LOGAN B E. Power densities using different cathode catalysts (Pt and Co TMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environ Sci Technol, 2006,40(1):364-369. doi: 10.1021/es0512071

    21. [21]

      FAN L, MIAO X. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. J Fuel Chem Technol, 2014,42(12):1506-1512.  

    22. [22]

      XIE Shan, LIANG Peng, LI Liang, HUANG Xia. Landfill leachate treatment with two-bottle H type microbial fuel cell[J]. China water wastewater, 2011,27(15):16-20.  

    23. [23]

      State Environmental Protection Administration. Determination methods for examination of water and wastewater[M].4th ed. Beijing:China Environmental Science Press, 2012.

    24. [24]

      FAN Y, SHARBROUGH E, LIU H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environ Sci Technol, 2008,42(21):8101-8107. doi: 10.1021/es801229j

    25. [25]

      JIANG Yu-zhi, KONG Qing-mei, LU Tian-hong, ZHOU Yi-ming, TANG Ya-wen. Electrocatalytic performance of carbon supported Ir catalysts with different Ir loadings for ammonia oxidation[J]. J Electrochem, 2009,15(4):387-391.  

    26. [26]

      XU Longjun, HU Jinfeng, JING Qi. Treatment of the aged landfill leachate by bio-cathode microbial fuel cells[M]. 20154th International Conference on Energy and Environmental Protection (ICEEP 2015), 1508-1513.

    27. [27]

      ZHOU Shao-qi. Microbial biochemical reactions of anaerobic oxidation of ammonium[J]. J South China Univ Techno:Nat Sci Ed, 2000,28(11):16-19. doi: 10.3321/j.issn:1000-565X.2000.11.004

  • 加载中
    1. [1]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    13. [13]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

Metrics
  • PDF Downloads(2)
  • Abstract views(2474)
  • HTML views(836)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return