Citation: Pan Yingying, Hu Xi, Lin Xiaoming, Xu Xuan, Luo Yifan. The Application of Core-Shell MOFs and Their Derivatives as Anode Materials in Lithium-Ion Batteries[J]. Chemistry, ;2020, 83(10): 883-890. shu

The Application of Core-Shell MOFs and Their Derivatives as Anode Materials in Lithium-Ion Batteries

Figures(5)

  • Metal-organic frameworks (MOFs) materials are widely used in the field of electrochemical energy conversion and storage, with the advantages of large specific surface area, adjustable pore size, easy preparation, structural and functional diversity. Among them, the unique core-shell materials often show more synergy between the core and shell due to the surface modification. This article introduces the development status of core-shell MOFs as anode materials for lithium-ion batteries, and focuses on the preparation methods of their derivatives (porous carbon, metal oxides, metal sulfur/selenide, metal/metal oxides) and their applications. MOFs can produce traditional inorganic electrode materials with adjustable structure and exhibit more excellent electrochemical performance by calcining at high temperature or changing the chemical reaction conditions. Finally, the problems and challenges of core-shell MOFs as anode materials for lithium-ion battery are summarized, and possible solutions and future application prospects are proposed.
  • 加载中
    1. [1]

      Gao F, Liu H, Yang K, et al. Int. J. Electrochem. Sci., 2020, 15: 1391-1411.

    2. [2]

      Shrivastav V, Sundriyal S, Goel P, et al. Coord. Chem. Rev., 2019, 393: 48-78. 

    3. [3]

      Atashrouz S, Rahmani M. Neural. Comput. Appl., 2020, 1-14.

    4. [4]

      Gao J, Mao H, Jin H, et al. Micropor. Mesopor. Mater., 2020, 297: 110030. 

    5. [5]

      Li K, Lin Y Z, Wang K, et al. Appl. Catal. B, 2020, 268: 118402. 

    6. [6]

      Liu Y, Zhao W, Li X, et al. Appl. Surf. Sci., 2020, 512: 145710. 

    7. [7]

      Chowdhuri A R, Laha D, Chandra S, et al. Chem. Eng. J., 2017, 319: 200-211. 

    8. [8]

      Li G L, Möhwald H, Shchukin D G. Chem. Soc. Rev., 2013, 42(8): 3628-3646. 

    9. [9]

      Lu W, Guo X, Luo Y, et al. Chem. Eng. J., 2019, 355: 208-237. 

    10. [10]

      Zhu W, Chen Z, Pan Y, et al. Adv. Mater., 2019, 31(38): 1800426. 

    11. [11]

      Zhang L, Liu H, Shi W, et al. Coord. Chem. Rev., 2019, 388: 293-309. 

    12. [12]

      Sun X, Gao G, Yan D, et al. Appl. Surf. Sci., 2017, 405: 52-59. 

    13. [13]

      Zhou Y, Huang Q, Low C T J, et al. New J. Chem., 2019, 43(14): 5632-5641. 

    14. [14]

      Wang B, Wang Z, Cui Y, et al. RSC Adv., 2015, 5(103): 84662-84665. 

    15. [15]

      Zheng X, Li Y, Xu Y, et al. CrystEngComm, 2012, 14(6): 2112-2116. 

    16. [16]

      Huang G, Yin D M, Wang L M. J. Mater. Chem. A, 2016, 4(39): 15106-15116. 

    17. [17]

      Geng H, Peng Y, Qu L, et al. Adv. Energy Mater., 2020, 10(10): 190330.

    18. [18]

      Dai C, Sun G, Hu L, et al. InfoMat, 2020, 2(3): 509-526. 

    19. [19]

      Sun J K, Xu Q. Energy Environ. Sci., 2014, 7(7): 2071-2100. 

    20. [20]

      Liu B, Shioyama H, Akita T, et al. J. Am. Chem. Soc., 2008, 130(16): 5390-5391. 

    21. [21]

      Liu Y, Xu X, Shao Z. Energy Storage Mater., 2020, 26: 1-22. 

    22. [22]

      Zeng X R, Jin W W, Li H J, et al. Nanotechnology, 2020, 31(15): 155602. 

    23. [23]

      Eddaoudi M, Kim J, Rosi N, et al. Science, 2002, 295(5554): 469-472. 

    24. [24]

      Ahnfeldt T, Gunzelmann D, Loiseau T, et al. Inorg. Chem., 2009, 48(7): 3057-3064. 

    25. [25]

      Wang X, Zhong W, Li Y. Catal. Sci. Technol., 2015, 5(2): 1014-1020. 

    26. [26]

      Shi Y, Zhang X, Wang L, et al. AIChE J., 2014, 60(8): 2747-2751. 

    27. [27]

      Zuo L, Chen S, Wu J, et al. RSC Adv., 2014, 4(106): 61604-61610. 

    28. [28]

      Liu N, Liu J, Jia D, et al. Energy Storage Mater., 2019, 18: 165-173. 

    29. [29]

      Wang K, Pei S, He Z, et al. Chem. Eng. J., 2019, 356: 272-281. 

    30. [30]

      Zhang W, Wang B, Luo H, et al. J. Alloy. Compd., 2019, 803: 664-670. 

    31. [31]

      Pei X, Chen Y, Li S, et al. Chin. J. Chem., 2016, 34(2): 157-174. 

    32. [32]

      Huang X C, Lin Y Y, Zhang J P, et al. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559. 

    33. [33]

      Jeon J W, Sharma R, Meduri P, et al. ACS Appl. Mater. Interf., 2014, 6(10): 7214-7222. 

    34. [34]

      Majeed M K, Ma G, Cao Y, et al. Chem. Eur. J., 2019, 25(51): 11991-11997. 

    35. [35]

      Chen D, Chen G, Pei J, et al. New J. Chem., 2017, 41(15): 6973-6976. 

    36. [36]

      Guo W, Sun W, Wang Y. ACS Nano, 2015, 9(11): 11462-11471. 

    37. [37]

      Lu Y, Yu L, Wu M, et al. Adv. Mater., 2018, 30(1): 1702875. 

    38. [38]

      Wang D P, Fu M, Ha Y, et al. J. Colloid Interf. Sci., 2018, 529: 265-272. 

    39. [39]

      Wang B, Wang Z, Cui Y, et al. Micropor. Mesopor. Mater., 2015, 203: 86-90. 

    40. [40]

      Huang G, Zhang F, Zhang L, et al. J. Mater. Chem. A, 2014, 2(21): 8048-8053. 

    41. [41]

      Huang G, Zhang L, Zhang F, et al. Nanoscale, 2014, 6(10): 5509-5515. 

    42. [42]

      Wu Y, Meng J, Li Q, et al. Nano Res., 2017, 10(7): 2364-2376. 

    43. [43]

      Liu L, Guo H, Liu J, et al. Chem. Commun., 2014, 50(67): 9485-9488. 

    44. [44]

      Zhang J, Chu R, Chen Y, et al. J. Alloy. Compd., 2019, 797: 83-91. 

    45. [45]

      Guo Y, Wang Z, Lu X, et al. Chem. Commun., 2020, 56(13): 1980-1983. 

    46. [46]

      Zhang G, Hou S, Zhang H, et al. Adv. Mater., 2015, 27(14): 2400-2405. 

    47. [47]

      Ge X, Li Z, Wang C, et al. ACS Appl. Mater. Interf., 2015, 7(48): 26633-26642. 

    48. [48]

      Wu M, Chen H, Lv L P, et al. Chem. Eng. J., 2019, 373: 985-994. 

    49. [49]

      Yin X, Zhi C, Sun W, et al. J. Mater. Chem. A, 2019, 7(13): 7800-7814. 

    50. [50]

      He Z, Wang K, Zhu S, et al. ACS Appl. Mater. Interf., 2018, 10(13): 10974-10985. 

    51. [51]

      Zhao Y, Li X, Liu J, et al. ACS Appl. Mater. Interf., 2016, 8(10): 6472-6480. 

    52. [52]

      Zhong M, Kong L, Li N, et al. Coord. Chem. Rev., 2019, 388: 172-201. 

    53. [53]

      Yin W, Li W, Wang K, et al. Electrochim. Acta, 2019, 318: 673-682. 

    54. [54]

      Xu X, Liu W, Kim Y, et al. Nano Today, 2014, 9(5): 604-630. 

    55. [55]

      Huang W, Li S, Cao X, et al. ACS Sustain. Chem. Eng., 2017, 5(6): 5039-5048. 

    56. [56]

      Jiang T, Bu F, Liu B, et al. New J. Chem., 2017, 41(12): 5121-5124. 

    57. [57]

      Xue H, Yue S, Wang J, et al. J. Electroanal. Chem., 2019, 840: 230-236. 

    58. [58]

      Shao J, Gao T, Qu Q, et al. J. Power Sources, 2016, 324: 1-7. 

    59. [59]

      Yuan D, Huang G, Yin D, et al. ACS Appl. Mater. Interf., 2017, 9(21): 18178-18186. 

    60. [60]

      Han Y, Li J, Zhang T, et al. Chem. Eur. J., 2018, 24(7): 1651-1656. 

    61. [61]

      Zhong M, He W W, Shuang W, et al. Inorg. Chem., 2018, 57(8): 4620-4628. 

    62. [62]

      Chen S, Zhou R, Chen Y, et al. Int. J. Electrochem. Sci., 2016, 11: 10522-10535.

    63. [63]

      Mandi Z, Shihua Q. Mater. Lett., 2016, 171: 18-22 

    64. [64]

      Guan B Y, Yu L, Li J, et al. Sci. Adv., 2016, 2(3): e1501554.

    65. [65]

      Zhang S, Zhang Z, Kang J, et al. Electrochim. Acta, 2019, 320: 134542. 

    66. [66]

      Song X, Chen S, Guo L, et al. Adv. Energy Mater., 2018, 8(27): 1801101. 

    67. [67]

      Yue H, Shi Z, Wang L, et al. J. Alloy. Compd., 2017, 723: 1018-1025. 

    68. [68]

      Cao Y, Lu Y, Ang E H, et al. Nanoscale, 2019, 11(32): 15112-15119. 

  • 加载中
    1. [1]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    4. [4]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    13. [13]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    19. [19]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(19)
  • Abstract views(1503)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return