Citation: Yu Lejian, Wang Miao, Hou Xu. Advances in Carbon-Based Nanogenerators[J]. Chemistry, ;2020, 83(6): 482-487, 496. shu

Advances in Carbon-Based Nanogenerators

  • Corresponding author: Hou Xu, houx@xmu.edu.cn
  • Received Date: 3 February 2020
    Accepted Date: 2 March 2020

Figures(2)

  • The energy crisis is becoming a major challenge facing all human beings, and the increasingly severe environmental problems have urged the increasing demand for clean energy. Carbon materials owing to their excellent physical and chemical properties have shown potentials. Recently, researchers have used micro/nano processing technology to prepare carbon-based materials of various dimensions to capture ambient energy, which is considered to be an efficient way of harvesting renewable and clean energy. From the perspective of different forms of energy made use of, this paper aims to give an introduction over the research advances in the different dimensional carbon materials for nanoscale power generation devices. The potential applications of carbon-based nanogenerator in wearable devices, sensors and beyond are presented.
  • 加载中
    1. [1]

      Xiong J, Han C, Li Z, et al. Sci. Bull., 2015, 60(24): 2083~2090. 

    2. [2]

      Midilli A, Ay M, Dincer I, et al. Renew. Sust. Energ. Rev., 2005, 9(3): 255~271. 

    3. [3]

      Zheng Q, Fang L, Guo H, et al. Adv. Funct. Mater., 2018, 28: 1706365. 

    4. [4]

    5. [5]

      Fan F R, Tang W, Wang Z L. Adv. Mater., 2016, 28: 4283~4305. 

    6. [6]

      Ajayan P M. Nature, 2019, 575: 49~50.

    7. [7]

      Ghosh S, Sood A K, Kumar N. Science, 2003, 299(5609): 1042~1044. 

    8. [8]

      Wu Z, Wang Y, Liu X, et al. Adv. Mater., 2019, 31: 1800716. 

    9. [9]

      Choudhary N, Hwang S, Choi W. Carbon nanomaterials: a review//Handbook of nanomaterials properties. Springer, Berlin, Heidelberg, 2014: 709~769.

    10. [10]

      Choi W, Hong S, Abrahamson J T, et al. Nat. Mater., 2010, 9(5): 423~429. 

    11. [11]

      Kim S, Mo J H, Jang K S. ACS Appl. Mater. Interf., 2019, 11(39): 35675~35682. 

    12. [12]

      Kim S H, Haines C S, Li N, et al. Science, 2017, 357(6353): 773~778. 

    13. [13]

      Mule A R, Dudem B, Graham S A, et al. Adv. Funct. Mater., 2019, 29(17): 1807779. 

    14. [14]

      Wang Z, Wu S, Wang J, et al. Nanomaterials, 2019, 9(7): 1045. 

    15. [15]

      Zhang X, Lu W, Zhou G, et al. Adv. Mater., 2020, 32(5): 1902028. 

    16. [16]

      Xu Y, Chen P, Zhang J, et al. Angew. Chem. Int. Ed., 2017, 56(42): 12940~12945. 

    17. [17]

      He S, Zhang Y, Qiu L, et al. Adv. Mater., 2018, 30(18): 1707635. 

    18. [18]

      Song J, Yang B, Zeng W, et al. Adv. Mater. Technol., 2018, 3(6): 1800016. 

    19. [19]

      Yu X, Pan J, Zhang J, et al. J. Mater. Chem. A, 2017, 5: 6032~6037. 

    20. [20]

      Gupta A, Sakthivel T, Seal S. Prog. Mater. Sci., 2015, 73: 44~126. 

    21. [21]

      Jiang K, Wang J, Li Q, et al. Adv. Mater., 2011, 23(9): 1154~1161. 

    22. [22]

      Khan S A, Zhang H L, Xie Y, et al. Adv. Eng. Mater., 2017, 19(3): 1600710. 

    23. [23]

      Park S, Kim H, Vosgueritchian M, et al. Adv. Mater., 2014, 26(43): 7324~7332. 

    24. [24]

      Xiao P, Liang Y, He J, et al. ACS Nano, 2019, 13: 4368~4378. 

    25. [25]

      Liu R, Liu C, Fan S. ACS Appl. Mater. Interf., 2018, 10: 35273~35280. 

    26. [26]

      Wang X, Yang B, Liu J, et al. Sci. Rep., 2016, 6: 36409. 

    27. [27]

      Wan S, Peng J, Jiang L, et al. Adv. Mater., 2016, 28: 7862~7898. 

    28. [28]

      Dhiman P, Yavari F, Mi X, et al. Nano Lett., 2011, 11: 3123~3127. 

    29. [29]

      Zhong H, Xia J, Wang F, et al. Adv. Funct. Mater., 2017, 27(5): 1604226. 

    30. [30]

      Mallineni S S K, Dong Y, Behlow H, et al. Adv. Energy Mater., 2018, 8: 1702736. 

    31. [31]

      Feng S, Yao T, Lu Y, et al. Nano Energy, 2019, 58: 63~68. 

    32. [32]

      Zhao F, Liang Y, Cheng H, et al. Energ. Environ. Sci., 2016, 9(3): 912~916. 

    33. [33]

      Huang Y, Cheng H, Yang C, et al. Nat. Commun., 2018, 9(1): 4166. 

    34. [34]

      Qin Z, Yin Y, Zhang W, et al. ACS Appl. Mater. Interf., 2019, 11: 12452~12459. 

    35. [35]

       

    36. [36]

    37. [37]

      Liu A T, Zhang G, Strano M S. Energy harvesting techniques mediated by molecular interactions with nanostructured carbon materials//Robotic Systems and Autonomous Platforms. Woodhead Publishing, 2019: 389~424.

  • 加载中
    1. [1]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    2. [2]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    13. [13]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    20. [20]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(14)
  • Abstract views(529)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return