Citation: Chaojun Wu, Mingcai Yin, Wenli Zhang, Yaoting Fan. A Facile Hydrothermal Synthesis and Fluorescent Property of Graphitic Carbon Nitride Quantum Dots[J]. Chemistry, ;2021, 84(4): 377-382. shu

A Facile Hydrothermal Synthesis and Fluorescent Property of Graphitic Carbon Nitride Quantum Dots

  • Corresponding author: Mingcai Yin, mcyin@zzu.edu.cn
  • Received Date: 22 September 2020
    Accepted Date: 2 November 2020

Figures(7)

  • In this paper, carbon nitride quantum dots (CN QDs) was successfully prepared by a facile hydrothermal reaction in pure water by using linear graphitic carbon nitride (Lg-CN) as starting material, without the existence of strong acid. The CN QDs were characterized by FT-IR, XRD, TEM, XPS, and its optical properties were determined by UV-Vis absorption and fluorescence spectra. In addition, the formation mechanism of CN QDs was elucidated. The results showed that in accordance with previous reports, on one side, the fluorescence of CN QDs is related to the excitation wavelength. On the other side, the fluorescent intensity and emission wavelength of CN QDs are influenced by the pH of CN QDs aqueous solution. Under pH 7, a maximum intensity was achieved. In addition, the fluorescence of CN QDs can be significantly quenched by Fe3+. So it can be used for selective determination of Fe3+. This new method for the synthesis of CN QDs provided in this manuscript can avoid both the tedious operations and the hazards caused by using of strong acids.
  • 加载中
    1. [1]

      Zhou Z X, Zhang Y Y, Shen Y F, et al. Chem. Soc. Rev., 2018, 47: 2298~2321. 

    2. [2]

      Mishra A, Mehta A, Basu S, et al. Carbon, 2019, 149: 693~721. 

    3. [3]

      Zhang M J, Zhang Y, Tang L, et al. J. Colloid Interf. Sci., 2019, 539: 654~664. 

    4. [4]

       

    5. [5]

      Wang T, Nie C Y, Ao Z M, et al. J. Mater. Chem. A, 2020, 8: 485~502. 

    6. [6]

      Liao G F, He F, Li Q, et al. Prog. Mater. Sci., 2020, 112: 100666. 

    7. [7]

      Tian N, Huang H W, Du X, et al. J. Mater. Chem. A, 2019, 7: 11584~11612. 

    8. [8]

      Sadhukhan M, Barman S. J. Mater. Chem. A, 2013, 1: 2752~2756. 

    9. [9]

      Zhou J, Yang Y, Zhang C Y. Chem. Commun., 2013, 49: 8605~8607. 

    10. [10]

      Fan X Q, Feng Y, Su Y Y, et al. RSC Adv., 2015, 5: 55158~55164. 

    11. [11]

      Zhou Z X, Shen Y F, Li Y, et al. ACS Nano, 2015, 9(12): 12480~12487. 

    12. [12]

      Song Z P, Lin T R, Lin L H, et al. Angew. Chem. Int. Ed., 2016, 55: 2773~2777. 

    13. [13]

      Liu Q, Zhu D B, Guo M L, et al. Chin. Chem. Lett., 2019, 30: 1639~1642. 

    14. [14]

      Cui Y J, Ding Z X, Fu X Z, et al. Angew. Chem. Int. Ed., 2012, 51(47): 11814~11818. 

    15. [15]

      Pattnaik S P, Behera A, Martha S, et al. J. Mater. Sci., 2019, 54(7): 5726~5742. 

    16. [16]

      Zhan Y, Liu Z, Liu Q, et al. New J. Chem., 2017, 41 (10): 3930~3938. 

    17. [17]

      Song Z P, Lin T R, Lin L H, et al. Angew. Chem. Int. Ed., 2016, 128(8): 2823~2827. 

    18. [18]

      Hassanzadeh J, Moghadam B R, Sobhani-Nasab A, et al. Spectrochim. Acta A, 2019, 214: 451~458. 

    19. [19]

      Wang M, Ju P, Li J J, et al. ACS Sustain. Chem. Eng., 2017, 5: 7878~7886. 

    20. [20]

      Xu H, Yan J, She X J, et al. Nanoscale, 2014, 6: 1406~1415. 

    21. [21]

      Zhang Q, Wang H, Chen S, et al. RSC Adv., 2017, 7: 13223~13227. 

    22. [22]

       

    23. [23]

      He L, Fei M, Chen J, et al. Data in Brief, 2018, 21: 501~510. 

    24. [24]

      Yang L Y, Wu X X, Luo L, et al. New J. Chem., 2019, 43: 3174~3179. 

    25. [25]

      Yang P, Zhao J, Wang J, et al. J. Mater. Chem. A, 2015, 3: 136~138. 

    26. [26]

      Chen J, Gao Y J, Hu X Y, et al. Talanta, 2019, 194: 493~500. 

    27. [27]

      Chen Z, Wu Y, Wang Q, et al. Prog. Nat. Sci. -Mater., 2017, 27: 333~337. 

    28. [28]

      Rong M, Song X, Zhao T, et al. J. Mater. Chem. C, 2015, 3: 10916~10924. 

    29. [29]

      Dong Y Q, Pang H C, Yang H B, et al. Angew. Chem. Int. Ed., 2013, 52: 7800~7804. 

    30. [30]

      Yin Y, Zhang Y M, Gao T L, et al. Mater. Chem. Phys., 2017, 194: 293~301. 

    31. [31]

      Wu F S, Yang M Q, Zhang H, et al. Opt. Mater., 2018, 77: 258~263. 

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    5. [5]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    6. [6]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    18. [18]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    19. [19]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    20. [20]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

Metrics
  • PDF Downloads(15)
  • Abstract views(1425)
  • HTML views(425)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return