Citation: LI Feng, LIU Ren-hou, ZHAO Ning, XIAO Fu-kui. Boron-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for hydrogenation of anthracene[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 1004-1014. shu

Boron-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for hydrogenation of anthracene

  • Corresponding author: LI Feng, lifeng2729@sxicc.ac.cn
  • Received Date: 28 June 2020
    Revised Date: 29 July 2020

    Fund Project: The project was supported by the National Youth Science Foundation of China (21802158) and National Natural Science Foundation of China (21776294)the National Youth Science Foundation of China 21802158National Natural Science Foundation of China 21776294

Figures(10)

  • A series of boron doped reduced graphene oxide catalysts were prepared and applied to anthracene hydrogenation. The results show that, with the change of the treatment temperature of the catalyst, the ordered carbon structure in the catalyst changed and boron replaced the carbon in the material skeleton, which affected the adsorption and activation of anthracene and hydrogen. After boron doping, the catalyst showed higher activity for anthracene hydrogenation reaction, the highest conversion of anthracene was up to 97%, and the highest selectivity of deep hydrogenation product octahydroanthracene was up to 19%.
  • 加载中
    1. [1]

      SU C L, LOH K P. Carbocatalysts:Graphene oxide and its derivatives[J]. Acc Chem Res, 2013,46(10):2275-2285. doi: 10.1021/ar300118v

    2. [2]

      ZHANG Y, ZHANG L Y, ZHOU C W. Review of chemical vapor deposition of graphene and related applications[J]. Acc Chem Res, 2013,46(10):2329-2339. doi: 10.1021/ar300203n

    3. [3]

      NAVALON S, DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Carbocatalysis by graphene-based materials[J]. Chem Rev, 2014,114(12):6179-6212. doi: 10.1021/cr4007347

    4. [4]

      FURIMSKY E. Carbons and carbon supported catalysts in hydroprocessing[J]. Platinum Metals Rev, 2009,53(3):135-137. doi: 10.1595/147106709X465479

    5. [5]

      ZHANG Z G, OKADA K, YAMAMOTO M, YOSHIDA T. Hydrogenation of anthracene over active carbon-supported nickel catalyst[J]. Catal Today, 1998,45(1):361-366.  

    6. [6]

      SUN L B, WEI X Y, LIU X Q, ZONG Z M, LI W, KOU J H. Selective hydrogen transfer to anthracene and its derivatives over an activated carbon[J]. Energy Fuels, 2009,23(10):4877-4882. doi: 10.1021/ef900398g

    7. [7]

      SUN L B, ZONG Z M, KOU J H, ZHANG L F, NI Z H, YU G Y, CHEN H, WEI X Y. Activated carbon-catalyzed hydrogenation of polycyclic arenes[J]. Energy Fuels, 2004,18(5):1500-1504. doi: 10.1021/ef049946a

    8. [8]

      HUANG X, QI X Y, BOEY F, ZHANG H. Graphene-based composites[J]. Chem Soc Rev, 2012,41(2):666-686. doi: 10.1039/C1CS15078B

    9. [9]

      TRANDAFIR M M, FLOREA M, NEAŢU F, PRIMO A, PARVULESCU V I, GARCÍA H. Graphene from alginate pyrolysis as a metal-free catalyst for hydrogenation of nitro compounds[J]. ChemSusChem, 2016,9(13):1565-1569. doi: 10.1002/cssc.201600197

    10. [10]

      PRIMO A, NEATU F, FLOREA M, PARVULESCU V, GARCIA H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation[J]. Nat Commun, 2014,55291. doi: 10.1038/ncomms6291

    11. [11]

      YANG J H, SUN G, GAO Y J, ZHAO H B, TANG P, TAN J, LU A H, MA D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst[J]. Energy Environ Sci, 2013,6(3):793-798. doi: 10.1039/c3ee23623d

    12. [12]

      KONG X, SUN Z, CHEN M, CHEN C, CHEN Q. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene[J]. Energy Environ Sci, 2013,6(11):3260-3266. doi: 10.1039/c3ee40918j

    13. [13]

      LIU Ren-hou. Study of Graphene-based carbocatalysts for hydrogenation of anthracene[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2017.

    14. [14]

      QU L T, LIU Y, BAEK J B, DAI L M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010,4(3):1321-1326. doi: 10.1021/nn901850u

    15. [15]

      WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene:Synthesis, characterization, and its potential applications[J]. ACS Catal, 2012,2(5):781-794. doi: 10.1021/cs200652y

    16. [16]

      WEI Z Z, WANG J, MAO S J, SU D F, JIN H Y, WANG Y H, XU F, LI H R, WANG Y. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes[J]. ACS Catal, 2015,5(8):4783-4789. doi: 10.1021/acscatal.5b00737

    17. [17]

      WU Z S, WINTER A, CHEN L, SUN Y, TURCHANIN A, FENG X L, MVLLEN K. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv Mater, 2012,24(37):5130-5135. doi: 10.1002/adma.201201948

    18. [18]

      ZHANG C H, FU L, LIU N, LIU M H, WANG Y Y, LIU Z F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Adv Mater, 2011,23(8):1020-1024. doi: 10.1002/adma.201004110

    19. [19]

      LIN Z Y, WALLER G, LIU Y, LIU M, WONG C P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Adv Energy Mater, 2012,2(7):884-888. doi: 10.1002/aenm.201200038

    20. [20]

      YAZDI A Z, CHIZARI K, JALILOV A S, TOUR J, SUNDARARAJ U. Helical and dendritic unzipping of carbon nanotubes:a route to nitrogen-doped graphene nanoribbons[J]. ACS Nano, 2015,9(6):5833-5845. doi: 10.1021/acsnano.5b02197

    21. [21]

      WANG Y, SHAO Y Y, MATSON D W, LI J H, LIN X H. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010,4(4):1790-1798. doi: 10.1021/nn100315s

    22. [22]

      SHENG Z H, SHAO L, CHEN J J, BAO W J, WANG F B, XIA X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t

    23. [23]

      SUBRAHMANYAM K S, PANCHAKARLA L S, GOVINDARAJ A, RAO C N R. Simple method of preparing graphene flakes by an arc-discharge method[J]. J Phys Chem C, 2009,113(11):4257-4259. doi: 10.1021/jp900791y

    24. [24]

      ENOUZ S, STÉPHAN O, COCHON J L, COLLIEX C, LOISEAU A. C-BN patterned single-walled nanotubes synthesized by laser vaporization[J]. Nano Lett, 2007,7(7):1856-1862. doi: 10.1021/nl070327z

    25. [25]

      SUENAGA K, COLLIEX C, DEMONCY N, LOISEAU A, PASCARD H, WILLAIME F. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon[J]. Science, 1997,278(5338):653-655. doi: 10.1126/science.278.5338.653

    26. [26]

      IAMPRASERTKUN P, KRITTAYAVATHANANON A, SAWANGPHRUK M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors[J]. Carbon, 2016,102:455-461. doi: 10.1016/j.carbon.2015.12.092

    27. [27]

      ZHAO Y, YANG L J, CHEN S, WANG X Z, MA Y W, WU Q, JIANG Y F, QIAN W J, HU Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. J Am Chem Soc, 2013,135(4):1201-1204. doi: 10.1021/ja310566z

    28. [28]

      THIRUMAL V, PANDURANGAN A, JAYAVEL R, KRISHNAMOORTHI S R, ILANGOVANET R. Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications[J]. Current Appl Phys, 2016,16(8):816-825. doi: 10.1016/j.cap.2016.04.018

    29. [29]

      I X H, ANTONIETTI M. Polycondensation of boron- and nitrogen-Codoped holey graphene monoliths from molecules:Carbocatalysts for selective oxidation[J]. Angew Chem Int Ed, 2013,52(17):4572-4576. doi: 10.1002/anie.201209320

    30. [30]

      WANG H, ZHENG X L, CHEN H N, YAN K Y, ZHU Z L, YANG S H. The nanoscale carbon p-n junction between carbon nanotubes and N, B-codoped holey graphene enhances the catalytic activity towards selective oxidation[J]. Chem Commu, 2014,50(56):7517-7520. doi: 10.1039/C4CC01707B

    31. [31]

      TANG Y B, YIN L C, YANG Y, BO X H, CAO Y L, WANG H E, ZHANG W J, BELLO I, LEE S T, CHENG H M, LEE C S. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma[J]. ACS Nano, 2012,6(3):1970-1978. doi: 10.1021/nn3005262

    32. [32]

      PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, GOVINDARAJ A, KRISHNAMURTHY H R, WAGHMARE U V, RAO C N R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene[J]. Adv Mater, 2009,21:4726-4730.  

    33. [33]

      XU Z, LU W G, WANG W L, GU C Z, LIU K H, BAI X D, WANG E G, DAI H J. Converting metallic single-walled carbon nanotubes into semiconductors by boron/nitrogen Co-doping[J]. Adv Mater, 2008,20(19):3615-3619. doi: 10.1002/adma.200800830

    34. [34]

      PULLAMSETTY A, SUNDARA R. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium[J]. J Colloid Interf Sci, 2016,479:260-270. doi: 10.1016/j.jcis.2016.06.069

    35. [35]

      SHENG Z H, GAO H L, BAO W J, WANG F B, XIA X H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. J Mater Chem, 2012,22(2):390-395. doi: 10.1039/C1JM14694G

    36. [36]

      THIRUMAL V, PANDURANGAN A, JAYAVEL R, ILANGOVAN R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synthetic Met, 2016,220:524-532. doi: 10.1016/j.synthmet.2016.07.011

    37. [37]

      YANG X X, LIU L, WU M H, WANG W L, BAI X D, WANG E G. Wet-chemistry-assisted nanotube-substitution reaction for high-efficiency and bulk-quantity synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes[J]. J Am Chem Soc, 2011,133(34):13216-13219. doi: 10.1021/ja202234z

    38. [38]

      BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2010,5(1):26-41.  

  • 加载中
    1. [1]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(4)
  • Abstract views(1773)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return