Citation: YANG Zhan-dong, MA En-juan, ZHANG Qian, LUAN Chun-hui, HUANG Wei. Catalytic performance of CuCoCe supported on nitrogen-doped carbon nanotubes for the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 804-812. shu

Catalytic performance of CuCoCe supported on nitrogen-doped carbon nanotubes for the synthesis of higher alcohols from syngas

  • Corresponding author: HUANG Wei, huangwei@tyut.edu.cn
  • Received Date: 3 April 2020
    Revised Date: 15 May 2020

Figures(5)

  • A series of nitrogen-doped carbon nanotubes (xN-CNTs) were obtained by treating the mixture of melamine and carbon nanotubes at high temperature; the CuCoCe catalysts supported on xN-CNTs were then prepared by impregnation method and used in the synthesis of higher alcohols from syngas. The CuCoCe/xN-CNTs catalysts were characterized by XRD, N2 sorption, H2-TPR, NH3-TPD and XPS and the effect of nitrogen content in xN-CNTs on the catalytic performance of CuCoCe/xN-CNTs in the higher alcohols synthesis was investigated. The results show that the content of nitrogen in xN-CNTs has a significant influence on the existence and dispersion of Cu on the CuCoCe/xN-CNTs catalysts; the presence of nitrogen can reduce the number of reducible Co species and lower the acid strength and amount on the catalyst surface, which helps to suppress the long-chain hydrocarbons formation and improve total alcohol selectivity. It is proposed that the morphological distribution and doping amount of nitrogen on the carbon tubes may play a crucial role in enhancing the catalytic performance of CuCoCe/xN-CNTs in the higher alcohols synthesis.
  • 加载中
    1. [1]

      GUPTA M, SMITH M, SPIVEY J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048

    2. [2]

      SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.  

    3. [3]

      LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    4. [4]

      AO M, PHAM G H, SUNARSO J, TADE M, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050. doi: 10.1021/acscatal.8b01391

    5. [5]

      XIAO K, BAO Z H, QI X Z, WANG X X. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013,34(1):116-129.  

    6. [6]

      XU, E-B-M-DOESBURG. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today, 1987,2(1):125-170. doi: 10.1016/0920-5861(87)80002-0

    7. [7]

      SHI L, WEI C, DENG S. Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. J Nat Gas Chem, 2011,1:53-57.  

    8. [8]

      FANG Y, LIU Y, DENG W. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas[J]. J Energy Chem, 2014,4:527-534.  

    9. [9]

      ANTON J, NEBEL J, GÖBEL C, GABRYSCH J, SONG H, FROESE C, RULAND H, MUHLER M, KALVZA S. CO hydrogenation to higher alcohols over Cu-Co-based catalysts derived from hydrotalcite-type precursors[J]. Top Catal, 2016,59(15/16):1361-1370.  

    10. [10]

      HUANG C, ZHANG M, ZHU C. Fabrication of highly stable SiO2 encapsulated multiple CuFe nanoparticles for higher alcohols synthesis via CO hydrogenation[J]. Catal Lett, 2018,148(4):1080-1092. doi: 10.1007/s10562-018-2329-0

    11. [11]

      LIN M, FANG K, LI D. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008,9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004

    12. [12]

      BAO Z, XIAO K, QI X. Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH[J]. J Energy Chem, 2013,22(1):107-113.  

    13. [13]

      CHEN T, SU J, ZHANG Z. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catal, 2018,8(9):8606-8617. doi: 10.1021/acscatal.8b00453

    14. [14]

      PEI Y, DING Y, ZHU H. Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction[J]. React Kinet Mech Catal, 2014,111(2):505-520. doi: 10.1007/s11144-013-0663-1

    15. [15]

      ZHAO Z, LU W, YANG R. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catal, 2017,8(1):228-241.  

    16. [16]

      PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts Chem Res, 2011,44(8):553-562. doi: 10.1021/ar100160t

    17. [17]

      PAN X L, BAO X H. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2008,47:6271-6281.  

    18. [18]

      LEE W J, MAITI U N, LEE J M, LIM J, HAN T H, KIM S O. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chem Commun, 2014,5(52):6683-6818.  

    19. [19]

      SOARES OS G P, ROCHA R P, GONÇALVES A G, FIGUEIREDO J L. Easy method to prepare N-doped carbon nanotubes by ball milling[J]. Carbon, 2015,91:114-121. doi: 10.1016/j.carbon.2015.04.050

    20. [20]

      CHEN S, QI P, CHEN J. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution[J]. Rsc Adv, 2015,5:31566-31574. doi: 10.1039/C5RA02112J

    21. [21]

      HE L, WENIGER F, NEUMANN H. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon:Catalysis beyond elec[J]. Angew Chem Int Ed, 2016,55:12582-12594. doi: 10.1002/anie.201603198

    22. [22]

      LU J Z, YANG L J, XU B L, W Q, ZHANG D, YUAN S J, ZHAI Y, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2013,4(2):613-621.  

    23. [23]

      FU T J, LI Z H. Highly dispersed cobalt on N-doped carbon nanotubes with improved Fischer-Tropsch synthesis activity[J]. Catal Commun, 2014,47:54-57. doi: 10.1016/j.catcom.2014.01.008

    24. [24]

      SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064

    25. [25]

      LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. J Fuel Chem Technol, 2019,47(6):709-717. doi: 10.3969/j.issn.0253-2409.2019.06.008 

    26. [26]

      XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013,3(6):1162-1591.  

    27. [27]

      HAN Tao, HUANG Wei, WANG Xiao-dong, TANG Yu, LIU Shuang-qiang, YOU Xiang-xuan. Study of Ce-Cu-Co/CNTs Catalysts for the synthesis of higher alcohols and ethanol from syngas[J]. Acta Phys-Chim Sin, 2014,30(11):2127-2133. doi: 10.3866/PKU.WHXB201409121

    28. [28]

      HANG Zu-sheng, TAN Ling-hua, JU Fa-yin, ZHOU Bin, YING San-jiu. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis[J]. J Analyt Sci, 2011,27(3):279-283.  

    29. [29]

      KUNDU S, WANG Y, XIA W. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces:A quantitative high-resolution XPS and TPD/TPR study[J]. J Phys Chem C, 2008,112(43):16869-16878. doi: 10.1021/jp804413a

    30. [30]

      TARAWNEH K M, AI-AQTASH N. Boron-and nitrogen-doped carbon nanotubes with surface defects:An Ab initio study(Article)[J]. J Comput Theor Nanos, 2013,6:1446-1452.  

    31. [31]

      AI P P, TAN M H, YAMANE N, LIU G G, FAN R G, YANG G H, YONEYAMA Y. Synergistic effect of boron-doped carbon nanotubes supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chem-Eur J, 2017,23(34):8252-8261. doi: 10.1002/chem.201700821

    32. [32]

      POLSTER C S, NAIR H, BAERTSCH C D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2, rich atmospheres on a mixed Cu and Ce oxide catalyst[J]. J Catal, 2009,266(2):308-319.  

    33. [33]

      KIM J Y, RODRIGUEZ J A, HANSON J C, FRENKEL A I, LEE P L. Reduction of CuO and Cu2O with H2:H Embedding and kinetic effects in the formation of suboxides[J]. J Am Chem Soc, 2003,125(35):10684-10692. doi: 10.1021/ja0301673

    34. [34]

      WANG P, ZHANG J F, BAI Y X, XIAO H, TIAN S P, XIE H J, YANG G H, TSUBAKI N, HAN Y Z, TAN Y S. Ternary copper-cobalt-cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation[J]. Appl Catal A:Gen, 2016,514:14-23. doi: 10.1016/j.apcata.2016.01.007

    35. [35]

      ZHANG Yu, WANG Kang-jun, ZHANG Ya-jing, DU Jie, LI De-bao, REN Bao-jin, WU Jing. Synthesis of dimethyl ether from CO2 hydrogenation over La1-yZryCu0.7Zn0.3Ox/HZSM-5 catalysts[J]. J Mol Catal, 2015,6:525-533.  

    36. [36]

      LI B, SUN X, SU D. Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials[J]. Phys Chem Chem Phys, 2015,17(10):6691-6694. doi: 10.1039/C4CP05765A

    37. [37]

      FENG W, WANG Q W, JIANG B, JI P J. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas[J]. Ind Eng Chem Res, 2011,50(19):11067-11072. doi: 10.1021/ie2014907

    38. [38]

      FIERRO G, JACONO M L, INVERSI M, DRAGONE R, PORTA P. TPR and XPS study of cobalt-copper mixed oxide catalysts:Evidence of a strong Co-Cu interaction[J]. Top Catal, 2000,10(1):39-48.  

    39. [39]

      LU R L, MAO D S, YU J. Enhanced activity of Cu-Fe/SiO2 catalyst for CO hydrogenation to higher alcohols by pretreating the support with ammonia[J]. J Ind Eng Chem, 2015,25:338-343. doi: 10.1016/j.jiec.2014.11.013

    40. [40]

      GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012,40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013 

    41. [41]

      LI X L, ZHANG J F, ZHANG M, ZHANG W, ZHANG M. The support effects on the direct conversion of syngas to higher alcohol synthesis over copper-based catalysts[J]. Catalysts, 2019,9(2)199. doi: 10.3390/catal9020199

    42. [42]

      HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A:Gen, 2013,455:145-154. doi: 10.1016/j.apcata.2013.02.001

    43. [43]

      SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chin J Catal, 2010,31(8):919-927.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

Metrics
  • PDF Downloads(4)
  • Abstract views(738)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return