Catalytic performance of CuCoCe supported on nitrogen-doped carbon nanotubes for the synthesis of higher alcohols from syngas
- Corresponding author: HUANG Wei, huangwei@tyut.edu.cn
Citation:
YANG Zhan-dong, MA En-juan, ZHANG Qian, LUAN Chun-hui, HUANG Wei. Catalytic performance of CuCoCe supported on nitrogen-doped carbon nanotubes for the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(7): 804-812.
GUPTA M, SMITH M, SPIVEY J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048
SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.
LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A
AO M, PHAM G H, SUNARSO J, TADE M, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050. doi: 10.1021/acscatal.8b01391
XIAO K, BAO Z H, QI X Z, WANG X X. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013,34(1):116-129.
XU, E-B-M-DOESBURG. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today, 1987,2(1):125-170. doi: 10.1016/0920-5861(87)80002-0
SHI L, WEI C, DENG S. Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. J Nat Gas Chem, 2011,1:53-57.
FANG Y, LIU Y, DENG W. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas[J]. J Energy Chem, 2014,4:527-534.
ANTON J, NEBEL J, GÖBEL C, GABRYSCH J, SONG H, FROESE C, RULAND H, MUHLER M, KALVZA S. CO hydrogenation to higher alcohols over Cu-Co-based catalysts derived from hydrotalcite-type precursors[J]. Top Catal, 2016,59(15/16):1361-1370.
HUANG C, ZHANG M, ZHU C. Fabrication of highly stable SiO2 encapsulated multiple CuFe nanoparticles for higher alcohols synthesis via CO hydrogenation[J]. Catal Lett, 2018,148(4):1080-1092. doi: 10.1007/s10562-018-2329-0
LIN M, FANG K, LI D. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008,9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004
BAO Z, XIAO K, QI X. Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH[J]. J Energy Chem, 2013,22(1):107-113.
CHEN T, SU J, ZHANG Z. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catal, 2018,8(9):8606-8617. doi: 10.1021/acscatal.8b00453
PEI Y, DING Y, ZHU H. Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction[J]. React Kinet Mech Catal, 2014,111(2):505-520. doi: 10.1007/s11144-013-0663-1
ZHAO Z, LU W, YANG R. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catal, 2017,8(1):228-241.
PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts Chem Res, 2011,44(8):553-562. doi: 10.1021/ar100160t
PAN X L, BAO X H. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2008,47:6271-6281.
LEE W J, MAITI U N, LEE J M, LIM J, HAN T H, KIM S O. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chem Commun, 2014,5(52):6683-6818.
SOARES OS G P, ROCHA R P, GONÇALVES A G, FIGUEIREDO J L. Easy method to prepare N-doped carbon nanotubes by ball milling[J]. Carbon, 2015,91:114-121. doi: 10.1016/j.carbon.2015.04.050
CHEN S, QI P, CHEN J. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution[J]. Rsc Adv, 2015,5:31566-31574. doi: 10.1039/C5RA02112J
HE L, WENIGER F, NEUMANN H. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon:Catalysis beyond elec[J]. Angew Chem Int Ed, 2016,55:12582-12594. doi: 10.1002/anie.201603198
LU J Z, YANG L J, XU B L, W Q, ZHANG D, YUAN S J, ZHAI Y, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2013,4(2):613-621.
FU T J, LI Z H. Highly dispersed cobalt on N-doped carbon nanotubes with improved Fischer-Tropsch synthesis activity[J]. Catal Commun, 2014,47:54-57. doi: 10.1016/j.catcom.2014.01.008
SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064
LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. J Fuel Chem Technol, 2019,47(6):709-717. doi: 10.3969/j.issn.0253-2409.2019.06.008
XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013,3(6):1162-1591.
HAN Tao, HUANG Wei, WANG Xiao-dong, TANG Yu, LIU Shuang-qiang, YOU Xiang-xuan. Study of Ce-Cu-Co/CNTs Catalysts for the synthesis of higher alcohols and ethanol from syngas[J]. Acta Phys-Chim Sin, 2014,30(11):2127-2133. doi: 10.3866/PKU.WHXB201409121
HANG Zu-sheng, TAN Ling-hua, JU Fa-yin, ZHOU Bin, YING San-jiu. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis[J]. J Analyt Sci, 2011,27(3):279-283.
KUNDU S, WANG Y, XIA W. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces:A quantitative high-resolution XPS and TPD/TPR study[J]. J Phys Chem C, 2008,112(43):16869-16878. doi: 10.1021/jp804413a
TARAWNEH K M, AI-AQTASH N. Boron-and nitrogen-doped carbon nanotubes with surface defects:An Ab initio study(Article)[J]. J Comput Theor Nanos, 2013,6:1446-1452.
AI P P, TAN M H, YAMANE N, LIU G G, FAN R G, YANG G H, YONEYAMA Y. Synergistic effect of boron-doped carbon nanotubes supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chem-Eur J, 2017,23(34):8252-8261. doi: 10.1002/chem.201700821
POLSTER C S, NAIR H, BAERTSCH C D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2, rich atmospheres on a mixed Cu and Ce oxide catalyst[J]. J Catal, 2009,266(2):308-319.
KIM J Y, RODRIGUEZ J A, HANSON J C, FRENKEL A I, LEE P L. Reduction of CuO and Cu2O with H2:H Embedding and kinetic effects in the formation of suboxides[J]. J Am Chem Soc, 2003,125(35):10684-10692. doi: 10.1021/ja0301673
WANG P, ZHANG J F, BAI Y X, XIAO H, TIAN S P, XIE H J, YANG G H, TSUBAKI N, HAN Y Z, TAN Y S. Ternary copper-cobalt-cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation[J]. Appl Catal A:Gen, 2016,514:14-23. doi: 10.1016/j.apcata.2016.01.007
ZHANG Yu, WANG Kang-jun, ZHANG Ya-jing, DU Jie, LI De-bao, REN Bao-jin, WU Jing. Synthesis of dimethyl ether from CO2 hydrogenation over La1-yZryCu0.7Zn0.3Ox/HZSM-5 catalysts[J]. J Mol Catal, 2015,6:525-533.
LI B, SUN X, SU D. Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials[J]. Phys Chem Chem Phys, 2015,17(10):6691-6694. doi: 10.1039/C4CP05765A
FENG W, WANG Q W, JIANG B, JI P J. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas[J]. Ind Eng Chem Res, 2011,50(19):11067-11072. doi: 10.1021/ie2014907
FIERRO G, JACONO M L, INVERSI M, DRAGONE R, PORTA P. TPR and XPS study of cobalt-copper mixed oxide catalysts:Evidence of a strong Co-Cu interaction[J]. Top Catal, 2000,10(1):39-48.
LU R L, MAO D S, YU J. Enhanced activity of Cu-Fe/SiO2 catalyst for CO hydrogenation to higher alcohols by pretreating the support with ammonia[J]. J Ind Eng Chem, 2015,25:338-343. doi: 10.1016/j.jiec.2014.11.013
GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012,40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013
LI X L, ZHANG J F, ZHANG M, ZHANG W, ZHANG M. The support effects on the direct conversion of syngas to higher alcohol synthesis over copper-based catalysts[J]. Catalysts, 2019,9(2)199. doi: 10.3390/catal9020199
HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A:Gen, 2013,455:145-154. doi: 10.1016/j.apcata.2013.02.001
SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chin J Catal, 2010,31(8):919-927.
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
(a): before reaction; (b): after reaction
(a): Cu 2p; (b): Co 2p; (c): Ce 3d; (d): N 1s