Citation: HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1087-1100. shu

Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics

  • Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 17 April 2018
    Revised Date: 3 July 2018

    Fund Project: the Coal Base Key Technologies R & D Program of Shanxi Province MH2014-13the National Natural Science Foundation of China 21273265The project was supported by the National Natural Science Foundation of China(21273265)and the Coal Base Key Technologies R & D Program of Shanxi Province(MH2014-13)

Figures(12)

  • The direct, nonoxidative conversion of methane to aromatics and hydrogen is a challenging research topic in the field of C1 chemistry due to the high carbon-atom utilization efficiency, zero CO2 emissions and short process flow. In the present paper, the advance of methane dehydroaromatization (MDA) is reviewed based on the research works of our group and the pertinent literatures from 2013 to 2017. The reaction mechanism and coking formation for the MDA process, the catalyst modification and regeneration, the application of the membrane reactor, as well as the non-Mo-based catalyst system were considered, the future prospect was given for the MDA reaction.
  • 加载中
    1. [1]

      XU Yi-de, BAO Xin-he, LIN Li-wu. Study on a new reaction:The direct conversion of methane to aromatics and hydrogen[J]. Bull Natl Nat Sci Found Chin, 2006,20(3):170-173. doi: 10.3969/j.issn.1000-8217.2006.03.012

    2. [2]

      WANG L S, TAO L X, XIE M S, XU G F, HUANG J S, XU Y D. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993,21(1/2):35-41.  

    3. [3]

      ISMAGILOV Z R, MATUS E V, TSIKOZA L T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen:Achievements and perspectives[J]. Energy Environ Sci, 2008,1(5):526-541. doi: 10.1039/b810981h

    4. [4]

      SPIVEY J J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev, 2014,43(3):792-803. doi: 10.1039/C3CS60259A

    5. [5]

      XU Y D, BAO X H, LIN L W. Direct conversion of methane under nonoxidative conditions[J]. J Catal, 2003,216(1/2):386-395.  

    6. [6]

      OLIVOS-SUAREZ A I, SZECSE NYI À, HENSEN E J M, RUIZ-MARTINEZ J, PIDKO E A, GASCON J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:Challenges and opportunities[J]. ACS Catal, 2016,6(5):2965-2981. doi: 10.1021/acscatal.6b00428

    7. [7]

      SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts:Challenges and prospects[J]. Chem Rev, 2017,177(13):8497-8520.  

    8. [8]

      MA S Q, GUO X G, ZHAO L X, SCOTT S, BAO X H. Recent progress in methane dehydroaromatization:From laboratory curiosities to promising technology[J]. J Energy Chem, 2013,22(1):1-20. doi: 10.1016/S2095-4956(13)60001-7

    9. [9]

      MAJHI S, MOHANTY P, WANG H, PANT K K. Direct conversion of natural gas to higher hydrocarbons:A review[J]. J Energy Chem, 2013,22(4):543-554. doi: 10.1016/S2095-4956(13)60071-6

    10. [10]

      WEI Fei, WEI Tong, HUANG He, QIAN Wei-zhong, TANG Xiao-ping. Development and industrial application analysis of methane dehydroaromatization[J]. Acta Pet Sin (Pet Process Sect), 2006,22(1):1-8. doi: 10.3969/j.issn.1001-8719.2006.01.001

    11. [11]

      SUN K, GINOSAR D, HE T, ZHANG Y, FAN M, CHEN R. Progress in nonoxidative dehydroaromatization of methane in the last 6 years[J]. Ind Eng Chem Res, 2018,57(6):1768-1789. doi: 10.1021/acs.iecr.7b04707

    12. [12]

      YAO Ben-zhen, CHEN Jin, LIU Dian-hua, FANG Ding-ye. Thermodynamic investigation on methane aromatization under nonoxidative condition[J]. Chem World, 2007,10:594-597. doi: 10.3969/j.issn.0367-6358.2007.10.005

    13. [13]

      WANG Tao, LIU Zhi-ling, ZHANG Ju, ZHANG Yuan, ZHANG Wei, LU Yong-bin. New advances in methane nonoxidative aromatization[J]. Nat Gas Chem Ind, 2018,43(2):127-134.  

    14. [14]

      WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal, 1996,3(3/4):289-297.  

    15. [15]

      GONA ÁLEZ I L, ORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S W, WECKHUYSEN B M, BEALE A M. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods[J]. Angew Chem Int Ed, 2016,55(17):5215-5219. doi: 10.1002/anie.201601357

    16. [16]

      VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUAREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci, 2018,9(21):4801-4807. doi: 10.1039/C8SC01263F

    17. [17]

      YIN F, LI M R, WANG G C. Periodic density functional theory analysis of direct methane conversion into ethylene and aromatic hydrocarbons catalyzed by Mo4C2/ZSM-5[J]. Phys Chem Chem Phys, 2017,19(33):22243-22255. doi: 10.1039/C7CP03440G

    18. [18]

      MA D, SHU Y Y, CHENG M J, XU Y D, BAO X H. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal, 2000,194(1):105-114. doi: 10.1006/jcat.2000.2908

    19. [19]

      WECKHUYSEN B M, ROSYNEK M P, LUNSFORD J H. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts[J]. Catal Lett, 1998,52(1/2):31-36. doi: 10.1023/A:1019094630691

    20. [20]

      KOSINOV N, COUMANS F J A G, USLAMIN E A, WIJPKEMA A S G, MEZARI B, HENSEN E J M. Methane dehydroaromatization by Mo/HZSM-5:Mono-or bifunctional catalysis[J]. ACS Catal, 2017,7(1):520-529. doi: 10.1021/acscatal.6b02497

    21. [21]

      KOSINOV N, WIJPKEMA A S G, USLAMIN E, ROHLING R, COUMANS F J A G, MEZARI B, PARASTAEV A, PORYVAEV A S, FEDIN M V, PIDKO E A, HENSEN E J M. Confined carbon mediates dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed, 2018,57(4):1016-1020. doi: 10.1002/anie.201711098

    22. [22]

      MA D, WANG D Z, SU L L, SHU Y Y, XU Y D, BAO X H. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation[J]. J Catal, 2002,208(2):260-269. doi: 10.1006/jcat.2002.3540

    23. [23]

      LIU H M, SU L L, WANG H X, SHEN W J, BAO X H, XU Y D. The chemical nature of carbonaceous deposits and their role in methane dehydroaromatization on Mo/MCM-22 catalysts[J]. Appl Catal A:Gen, 2002,236:263-280. doi: 10.1016/S0926-860X(02)00293-4

    24. [24]

      TEMPELMAN C H L, HENSEN E J M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction[J]. Appl Catal B:Environ, 2015,176-177:731-739. doi: 10.1016/j.apcatb.2015.04.052

    25. [25]

      SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, ZHANG Z G. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K[J]. Appl Catal A:Gen, 2014,482:387-396. doi: 10.1016/j.apcata.2014.06.018

    26. [26]

      SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, MA X X, ZHANG Z G. The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K:Exploration of the coking pathway[J]. J Catal, 2015,330:261-272. doi: 10.1016/j.jcat.2015.07.017

    27. [27]

      XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Effect of superficial velocity on the coking behavior of a nanozeolite-based Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization at 1073 K[J]. Catal Sci Technol, 2013,3(10):2769-2777. doi: 10.1039/c3cy00320e

    28. [28]

      ZHAO Ke-ke, HUANG Xin, JIA Li-tao, HOU Bo, LI De-bao. Effect of W addition on the catalytic properties of Mo/HZSM-5 catalyst in methane non-oxidative dehydroaromatization[J]. J Fuel Chem Technol, 2017,45(11):1384-1391. doi: 10.3969/j.issn.0253-2409.2017.11.014

    29. [29]

      XU Yue-bing, LU Jiang-yin, WANG Ji-de, ZHANG Zhan-guo. Mo-based zeolite catalysts and oxygen-free methane aromatization[J]. Prog Chem, 2011,23(1):90-106.  

    30. [30]

      MA Ji-yuan, LU Jiang-yin, YUAN Zhao, WANG Chun-xiao. Methane dehydroaromatization over cobalt modified Mo/HZSM-5 catalysis in absence of oxidants[J]. Pet Process Petrochem, 2013,44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006

    31. [31]

      FILA V, BERNAUER M, BERNAUER B, SOBALIK Z. Effect of addition of a second metal in Mo/ZSM-5 catalyst for methane aromatization reaction under elevated pressures[J]. Catal Today, 2015,256:269-275. doi: 10.1016/j.cattod.2015.02.035

    32. [32]

      MA Ji-yuan, ZHANG Hang-fei, YIN Jin-lian, ZHOU Rong, LU Jiang-yin. Methane dehydroaromatization over Ni modified Mo-Co/HZSM-5 catalysts[J]. Nat Gas Chem Ind, 2016,41(2):19-24. doi: 10.3969/j.issn.1001-9219.2016.02.005

    33. [33]

      TSHABALALA T E, COVILLE N J, ANDERSON J A, SCURREL M S. Dehydroaromaticzation of methane over Sn-Pt modified Mo/H-ZSM-5 zeolite catalysts:Effect of preparation method[J]. Appl Catal A:Gen, 2015,503:218-226. doi: 10.1016/j.apcata.2015.06.035

    34. [34]

      TSHABALALA T E, COVILLE N J, SCURREL M S. Dehydroaromatization of methane over doped Pt/Mo/H-ZSM-5 zeolite catalysts:The promotional effect of tin[J]. Appl Catal A:Gen, 2014,485:238-244. doi: 10.1016/j.apcata.2014.07.022

    35. [35]

      ABDELSAYED V, SHEKHAWAT D, SMITH M W. Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel, 2015,139:401-410. doi: 10.1016/j.fuel.2014.08.064

    36. [36]

      CHENG X, YAN P, ZHANG X Z, YANG F, DAI C Y, LI D P, MA X X. Enhanced methane dehydroaromatization in the presence of CO2 over Fe-and Mg-modified Mo/ZSM-5[J]. Mol Catal, 2017,437:114-120. doi: 10.1016/j.mcat.2017.05.011

    37. [37]

      DING W P, MEITZNER G D, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal, 2002,206(1):14-22. doi: 10.1006/jcat.2001.3457

    38. [38]

      JIN Z H, SU L, QIN L, LIU Z C, WANG Y D, XIE Z K, WANG X Y. Methane dehydroaromatization by Mo-supported MFI-type zeolite with core-shell structure[J]. Appl Catal A:Gen, 2013,453:295-301. doi: 10.1016/j.apcata.2012.12.043

    39. [39]

      TEMPELMAN C H L, RODRIGUE V O D, ECK E R H, MAGUSIN P, HESEN E J M. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization[J]. Microporous Mesoporous Mater, 2015,203:259-273. doi: 10.1016/j.micromeso.2014.10.020

    40. [40]

      WU Y Q, LU Z, EMDADI L, OH S C, WANG J, LEI Y, CHEN H Y, TRAN D T, LEE I C, LIU D X. Tuning external surface of unit-cell thick pillared MFI and MWW zeolites by atomic layer deposition and its consequences on acid-catalyzed reactions[J]. J Catal, 2016,337:177-187. doi: 10.1016/j.jcat.2016.01.031

    41. [41]

      CHU N B, WANG J Q, ZHANG Y, YANG J H, LU J M, YIN D H. Nestlike hollow hierarchical MCM-22 microspheres:Synthesis and exceptional catalytic properties[J]. Chem Mater, 2010,22(9):2757-2763. doi: 10.1021/cm903645p

    42. [42]

      MARTINEZ A, PERIS E. Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts:Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations[J]. Appl Catal A:Gen, 2016,515:32-44. doi: 10.1016/j.apcata.2016.01.044

    43. [43]

      TEMPELMAN C H L, PORTILLA M T, ARMERO M E M, MEZARI B, CALUWE N G R, MARTINEZ C, HENSEN E J M. One-pot synthesis of nano-crystalline MCM-22[J]. Microporous Mesoporous Mater, 2016,220:28-38. doi: 10.1016/j.micromeso.2015.08.018

    44. [44]

      LIU Heng, KAN Qiu-bin. Synthesis of hierarchical Mo/H-IM-5 catalysts by using mesoporous material as the silica source and its application in methane non-oxidative aromatization[J]. J Fuel Chem Technol, 2016,44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015 

    45. [45]

      YANG J H, CHU J, WANG J Q, YIN D H, LU J M, ZHANG Y. Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions[J]. Chin J Catal, 2014,35(1):49-57. doi: 10.1016/S1872-2067(12)60711-6

    46. [46]

      HU J, WU S J, LIU H, DING H, LI Z F, GUAN J Q, KAN Q B. Effect of mesopore structure of TNU-9 on methane dehydroaromatization[J]. RSC Adv, 2014,4(51):26577-26584. doi: 10.1039/c4ra03945a

    47. [47]

      ZHU P F, YANG G H, SUN J, FAN R G, ZHANG P P, YONEYAMA Y, TSUBAKI N. A hollow Mo/HZSM-5 zeolite capsule catalyst:Preparation and enhanced catalytic properties in methane dehydroaromatization[J]. J Mater Chem A, 2017,5(18):8599-8607. doi: 10.1039/C7TA02345F

    48. [48]

      WU Y Q, EMDADI L, WANG Z P, FAN W, LIU D X. Textural and catalytic properties of Mo loaded hierarchical meso-/microporous lamellar MFI and MWW zeolites for direct methane conversion[J]. Appl Catal A:Gen, 2014,470:344-354. doi: 10.1016/j.apcata.2013.10.053

    49. [49]

      LIU H M, LI Y, SHEN W J, BAO X H, XU Y D. Methane dehydroaromatization over Mo/HZSM-5 catalysts in the absence of oxygen:Effects of silanation in HZSM-5 zeolite[J]. Catal Today, 2004,93/95:65-73. doi: 10.1016/j.cattod.2004.05.014

    50. [50]

      RAMIREZ J P, VERBOEKEND D, BONILLA A, ABELLO S. Hierarchical zeolite catalysts:Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Adv Funct Mater, 2009,19(24):3972-3979. doi: 10.1002/(ISSN)1616-3028

    51. [51]

      WU Y Q, EMDADI L, OH S C, SAKBODIN M, LIU D X. Spatial distribution and catalytic performance of metal-acid sites in Mo/MFI catalysts with tunable meso-/microporous lamellar zeolite structures[J]. J Catal, 2015,323:100-111. doi: 10.1016/j.jcat.2014.12.022

    52. [52]

      WANG K, HUANG X, LI D B. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization:One-step synthesis and the exceptional catalytic performance[J]. Appl Catal A:Gen, 2018,556:10-19. doi: 10.1016/j.apcata.2018.02.030

    53. [53]

      KOSINOV N, COUMANS F J A G, LI G, USLAMIN E, MEZARI B, WIJPKEMA A S G, PIDKO E A, HENSEN E J M. Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration[J]. J Catal, 2017,346:125-133. doi: 10.1016/j.jcat.2016.12.006

    54. [54]

      GAO J, ZHENG Y T, JEHNG J M, TANG Y D, WACHS I E, PODKOLZIN S G. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion[J]. Science, 2015,348(6235):686-690. doi: 10.1126/science.aaa7048

    55. [55]

      PORTILLA M T, LLOPIS F J, MARTINEZ C. Non-oxidative dehydroaromatization of methane:An effective reaction-regeneration cyclic operation for catalyst life extension[J]. Catal Sci Technol, 2015,5(7):3806-3821. doi: 10.1039/C5CY00356C

    56. [56]

      KOSINOV N, COUMANS F J A G, ULSAMIN E, KAPTEIJIN F, HENSEN E J M. Selective coke combustion by oxygen pulsing during Mo/ZSM-5-Catalyzed methane dehydroaromatization[J]. Angew Chem Int Ed, 2016,55(48):15086-15090. doi: 10.1002/anie.201609442

    57. [57]

      SUN C Y, FANG G Z, GUO X G, HU Y L, MA S Q, YANG T H, HAN J, MA H, TAN D L, BAO X H. Methane dehydroaromatization with periodic CH4-H2 switch:A promising process for aromatics and hydrogen[J]. J Energy Chem, 2015,24(3):257-263. doi: 10.1016/S2095-4956(15)60309-6

    58. [58]

      XU Y B, LU J Y, SUZUKI Y, ZHANG Z G, MA H T, YAMAMOTO Y. Performance of a binder-free, spherical-shaped Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization in fixed-and fluidized-bed reactors under periodic CH4-H2 switch operation[J]. Chem Eng Process:Process Intensif, 2013,72:90-102. doi: 10.1016/j.cep.2013.05.016

    59. [59]

      PEREZ-URESTI S, ADRIAN-MENDIOLA J, El-HALWAGI M. Techno-Economic assessment of benzene production from shale gas[J]. Processes, 2017,5(33):1-10.

    60. [60]

      XU Y, WANG J, SUZUKI Y, ZHANG Z. Improving effect of Fe additive on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization[J]. Catal Today, 2012,185(1):41-46. doi: 10.1016/j.cattod.2011.09.026

    61. [61]

      XU Y, LU J, WANG J, SUZUKI Y, ZHANG Z. The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at severe and periodic CH4-H2 switch operating conditions[J]. Chem Eng J, 2011,168(1):390-402. doi: 10.1016/j.cej.2011.01.047

    62. [62]

      XU Y, WANG J, SUZUKI Y, ZHANG Z. Effect of transition metal additives on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization under periodic CH4-H2 switch operation at 1073 K[J]. Appl Catal A:Gen, 2011,409/410:181-193. doi: 10.1016/j.apcata.2011.10.003

    63. [63]

      XU Y B, SUZUKI Y, ZHANG Z G. Comparison of the activity stabilities of nanosized and microsized zeolites based Fe-Mo/HZSM-5 catalysts in the non-oxidative CH4 dehydroaromatization under periodic CH4-H2 switching operation at 1073 K[J]. Appl Catal A:Gen, 2013,452:105-116. doi: 10.1016/j.apcata.2012.11.027

    64. [64]

      XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Mechanism of Fe additive improving the activity stability of microzeolite-based Mo/HZSM-5 catalyst in non-oxidative methane dehydroaromatization at 1073 K under periodic CH4-H2 switching modes[J]. Catal Sci Technol, 2014,4(10):3644-3656. doi: 10.1039/C4CY00613E

    65. [65]

      SONG Y, ZHANG Q, XU Y B, ZHANG Y, MATSUOKA K, ZHANG Z G. Coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the nonoxidative methane aromatization under cyclic CH4-H2 feed switch mode[J]. Appl Catal A:Gen, 2017,530:12-20. doi: 10.1016/j.apcata.2016.11.016

    66. [66]

      NATESAKHAWAT S, MEANS N C, HOWARD B H, ABDELSAYED V, BALTRUS J P, CHENG Y, LEKSE J W, LINK D, MORREALE B D. Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors[J]. Catal Sci Technol, 2015,5(11):5023-5036. doi: 10.1039/C5CY00934K

    67. [67]

      XUE J, CHEN Y, WEI Y Y, FELDHOFF A, WANG H H, CARO J. Gas to liquids:Natural gas conversion to aromatic fuels and chemicals in a hydrogen-permeable ceramic hollow fiber membrane reactor[J]. ACS Catal, 2016,6(4):2448-2451. doi: 10.1021/acscatal.6b00004

    68. [68]

      CAO Z W, JIANG H Q, LUO H X, BAUMANN S, MEULENBERG W A, ASSMANN J, MLECZKO L, LIU Y, CARO J. Natural gas to fuels and chemicals:Improved methane aromatization in an oxygen-permeable membrane reactor[J]. Angew Chem Int Ed, 2013,52(51):13794-13797. doi: 10.1002/anie.201307935

    69. [69]

      MOREJUDO S H, ZANON R, ESCOLASTICO S, YUSTE I, MALEROD H, VESTRE P K, COORS W G, MARTINEZ A, NORBY T, SERRA J M, KJOLSETH C. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016,353(6299):563-566. doi: 10.1126/science.aag0274

    70. [70]

      ABDELSAYED V, SMITH M W, SHEKHAWAT D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J]. Appl Catal A:Gen, 2015,505:365-374. doi: 10.1016/j.apcata.2015.08.017

    71. [71]

      GIM M Y, HAN S J, KANG T H, SONG J H, KIM T H, KIM D H, LEE K Y, SONG I K. Benzene, toluene, and xylene production by direct dehydroaromatization of methane over WOy/HZSM-5 catalysts[J]. J Nanosci Nanotechnol, 2017,17(11):8226-8231. doi: 10.1166/jnn.2017.15095

    72. [72]

      TSHABALALA T E, COVILLE N J, SCURELL M S. Methane dehydroaromatization over modified Mn/H-ZSM-5 zeolite catalysts:Effect of tungsten as a secondary metal[J]. Catal Commun, 2016,78:37-43. doi: 10.1016/j.catcom.2016.02.005

    73. [73]

      DUTTA K, LI L, GUPTA P, GUTIERREZ D P, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun, 2018,106:16-19. doi: 10.1016/j.catcom.2017.12.005

    74. [74]

      TAN P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J]. J Catal, 2016,338:21-29. doi: 10.1016/j.jcat.2016.01.027

    75. [75]

      LAI Y, VESER G. The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization[J]. Catal Sci Technol, 2016,6(14):5440-5452. doi: 10.1039/C5CY02258D

    76. [76]

      GUO X G, FANG G Z, LI G, MA H, FAN H J, YU L, MA C, WU X, DENG D H, WEI M M, TAN D L, SI R, ZHANG S, LI J Q, SUN L T, TANG Z C, PAN X L, BAO X H. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014,344(6184):616-619. doi: 10.1126/science.1253150

    77. [77]

      SAKBODIN M, WU Y Q, OH S C, WACHSMAN E D, LIU D X. Hydrogen-permeable tubular membrane reactor:Promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed, 2016,55(52):16149-16152. doi: 10.1002/anie.201609991

  • 加载中
    1. [1]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(29)
  • Abstract views(1831)
  • HTML views(464)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return