Citation: SHI Guo-liang, YU Feng, YAN Xiao-liang, LI Rui-feng. Synthesis of tetragonal sulfated zirconia via a novel route for biodiesel production[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 311-316. shu

Synthesis of tetragonal sulfated zirconia via a novel route for biodiesel production

  • Corresponding author: LI Rui-feng, rfli@tyut.edu.cn
  • Received Date: 14 November 2016
    Revised Date: 19 December 2016

    Fund Project: the National Natural Science Foundation of China 21406153Research Fund for the Doctoral candidate of Taiyuan University of Science and Technology 20162017the National Natural Science Foundation of China 21376157Shanxi Province Science Foundation for Youths 2013021008-3

Figures(5)

  • The sulfated zirconia was prepared by directly impregnating ammonium persulphate on the crystalline zirconia and followed by the calcination temperatures of 300-500℃. The structural properties of the catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), Fourier transform infrared spectroscopy (FT-IR) and a scanning electron microscope (SEM) equipped with an energy dispersive spectroscope (EDS). The experiment results demonstrated that the catalysts presented the tetragonal structure of zirconia and high crystallinity. The catalyst calcined at 500℃ possessed the highest sulfur content and acidic sites in the catalysts. The catalyst exhibited high catalytic activity in transesterification of soybean oil with methanol. The yield of biodiesel achieved 84.6% because of the preferable super-acid sites on the surface of the catalyst.
  • 加载中
    1. [1]

      ZALI A, SHOKROLAHI A. Nano-sulfated zircionia as an efficient, recyclable and environmentally benign catalyst for one-pot three component synthesis of amidoalkyl naphthols[J]. Chin Chem Lett, 2012,23(3):269-272. doi: 10.1016/j.cclet.2011.12.002

    2. [2]

      GARG S, SONI K, KUMARAN G M, BAL R, GORA-MARED K, GUPTA J K, SHARMA L D, DHAR G M. Acidity and catalytic activities of sulfated zirconia inside SBA-15[J]. Catal Today, 2009,141(1/2):125-129.  

    3. [3]

      ZHAO J, YUE Y H, HUA W M, HE H Y, GAO Z. Catalytic activities and properties of sulfated zirconia supported on mesostructured γ-Al2O3[J]. Appl Catal A:Gen, 2008,336(1/2):133-139.  

    4. [4]

      ESSAYEM N, MARTIN V, RIONDEL A, VEDRINE J C. Esterification of acrylic acid with but-1-ene over sulfated Fe-and Mn- promoted zirconia[J]. Appl Catal A:Gen, 2007,326(1):74-81. doi: 10.1016/j.apcata.2007.03.038

    5. [5]

      HESHMATPOUR F, AGHAKHANPOUR R B. Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol-gel route[J]. Adv Powder Technol, 2012,23(1):80-87. doi: 10.1016/j.apt.2010.12.012

    6. [6]

      MORENO J A, PONCELET G. Isomerization of n-Butane over sulfated Al-and Ga-promoted zirconium oxide catalysts. influence of promoter and preparation method[J]. J Catal, 2001,203(2):453-465. doi: 10.1006/jcat.2001.3324

    7. [7]

      BAUTISTA P, FARALDOS M, YATES M, BAHAMONDE A. Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane[J]. Appl Catal B:Environ, 2007,71(3/4):254-261.  

    8. [8]

      SAITO M, ITOH M, IWAMOTO J. Low-temperature hydrogen-selective catalytic reduction of NOx on Pt/sulfated-ZrO2 catalysts under excess oxygen conditions[J]. Chem Lett, 2008,37(12):1210-1211. doi: 10.1246/cl.2008.1210

    9. [9]

      REDDY B M, REDDY G K, RAO K N. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia:Beckmann rearrangement[J]. J Mol Catal A:Chem, 2009,306(1/2):62-68.  

    10. [10]

      PIETROGIACOMI D, MAGLIANO A, SANNINO D, CAMPA M C, CIAMBELLI P, INDOVINA V. In situ sulphated CuOx/ZrO2 and CuOx/sulphated-ZrO2 as catalysts for the reduction of NOx with NH3 in the presence of excess O2[J]. Appl Catal B:Environ, 2005,60(1/2):83-92.  

    11. [11]

      SIGNORETTO M, MELADA S, PINNA F, POLIZZI S, CERRAT O C, MORTERRA C. Ga2O3-promoted sulfated zirconia systems:Morphological, structural and redox properties[J]. Microporous Mesoporous Mater, 2005,81(1/3):19-29.  

    12. [12]

      SONG Y Q, TIAN J, YE Y R, JIN Y Q, ZHOU X L, WANG J A, XU L Y. Effects of calcinations temperature and water-washing treatment on n-hexane hydroisomerization behavior of Pt-promoted sulfated zirconia based catalysts[J]. Catal Today, 2013,212(8):108-114.  

    13. [13]

      GAO S, CHEN X B, WANG H Q, MO J S, WU Z B, LIU Y, WENG X L. Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3[J]. J Colloid Interface Sci, 2013,394(1):515-521.  

    14. [14]

      LI X B, NAGAOKA K, OLINDO R, LERCHER J A. Synthesis of highly active sulfated zirconia by sulfation with SO3[J]. J Catal, 2006,238(1):39-45. doi: 10.1016/j.jcat.2005.11.039

    15. [15]

      SHI G L, YU F, WANG Y, LI R F. Synthesis of growth-controlled ZrO2 nanocrystals via vapor phase hydrolysis[J]. Ceram Int, 2014,40(8):13083-13088. doi: 10.1016/j.ceramint.2014.05.006

    16. [16]

      YADAV G D, AJGAONKAR N P, VARMA A. Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in pechmann condensation of resorcinol with ethyl acetoacetate[J]. J Catal, 2012,292(4):99-110.  

    17. [17]

      VLASOV E A, MYAKIN S V, SYCHOV M M, AHO A, POSTNOV A Y, MALTSEVA N V, DOLGASHEV A O, OMAROV S O, MURZIN D Y. On synthesis and characterization of sulfated alumina-zirconia catalysts for isobutene alkylation[J]. Catal Lett, 2015,145(9):1651-1659. doi: 10.1007/s10562-015-1575-7

    18. [18]

      BERNAL H G, CAERO L C, FINOCCHIO E, BUSCA G. An FT-IR study of the adsorption and reactivity of tert-butyl hydroperoxide over oxide catalysts[J]. Appl Catal A:Gen, 2009,369(1):27-35.  

    19. [19]

      CORMA A, FORNES V, JUAN R M I, BUSCA G. Influence of preparation conditions on the structure and catalytic properties of SO42-/ZrO2 superacid catalysts[J]. Appl Catal A:Gen, 1994,116(1/2):151-163.  

    20. [20]

      YADAV G D, MURKUTE A D. Preparation of a novel catalyst UDCaT-5:enhancement in activity of acid-treated zirconia effect of treatment with chlorosulfonic acid vis-à-vis sulfuric acid[J]. J Catal, 2004,224(1):218-223. doi: 10.1016/j.jcat.2004.02.021

    21. [21]

      PETCHMALA A, LAOSIRIPOJANA N, JONGSOMJIT B, GOTO M, PANPRANOT J, MEKASUWAN-DUMRONG O. Transesterification of palm oil and esterification of palm fatty acid in near-and super-critical methanol with SO4-ZrO2 catalysts[J]. Fuel, 2010,89(9):2387-2392. doi: 10.1016/j.fuel.2010.04.010

    22. [22]

      SHI G L, YU F, WANG Y, PAN D H, WANG H G, LI R F. A novel one-pot synthesis of sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil[J]. Renew Energy, 2016,92(A1/A6):22-29.

  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    3. [3]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    4. [4]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    5. [5]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    6. [6]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    7. [7]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    8. [8]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    11. [11]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    12. [12]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

Metrics
  • PDF Downloads(0)
  • Abstract views(672)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return