Citation: Lyu Longmei, Geng Lin, Wen Mingjie, Qiao Zhangyu, Kou Weihua, Wang Yan, Tian Shaobo, Wang Rui. Study on the Atmospheric Reaction of NO2 with HSO:Mechanism and Kinetics[J]. Chemistry, ;2019, 82(6): 534-541, 503. shu

Study on the Atmospheric Reaction of NO2 with HSO:Mechanism and Kinetics

  • Corresponding author: Wang Rui, wangrui830413@163.com
  • Received Date: 16 October 2018
    Accepted Date: 30 March 2019

Figures(5)

  • The mechanism for the reaction between NO2 and HSO was investigated at the CCSD(T)/aug-cc-pVTZ //B3LYP/aug-cc-pVTZ level on both the singlet and triplet potential energy surfaces (PESs). The results showed that there are three hydrogen abstraction reaction channels on both singlet [R1 HN(O)O+1SO), R2 (cis-HONO+1SO), and R3 (trans-HONO+1SO)] and triplet [R6 (HN(O)O+3SO), R7(cis-HONO+3SO), and R8(trans-HONO+3SO)] PESs, as well as two oxygen abstraction reaction channels on both singlet [R4 (NO+HS(O)O)and R5(H+SO2+NO)] and triplet [R9(HS(O)O+NO) and R10 (H+SO2+NO)] on the triplet PESs. Among these channels, Channel R2 (cis-HONO+1SO) on the singlet PESs is the favorable channel. The rate constants of above reaction channels were evaluated using classical transition state theory (TST) and Wigner correction. The calculated results showed that the reaction channel of cis-HONO+SO formations is favorable and its rate constant, at 298K, is 7.78×10-13cm3·molecule-1·s-1, which is in good agreement with experimental value (9.6×10-12cm3·molecule-1·s-1). Water molecule catalyzed R2 (cis-HONO+1SO) occurs through two different channels of NO2+H2O…HSO and NO2+H2O…HSO (HSO+NO2…H2O), where the barriers of the two channels respectively are enhanced by 49.97 kcal·mol-1 and 20.67 kcal·mol-1 than that of the naked reaction of R2, indicating that the effect of water molecules on the NO2+HSO reaction can be neglected in the actual atmospheric environment.
  • 加载中
    1. [1]

      T L Zhang, R Wang, H Chen et al. Phys. Chem. Chem. Phys., 2015, 17(22): 15046~15055. 

    2. [2]

      R Atkinson, D L Baulch, R Cox et al. Atmos. Chem. Phys., 2004, 4(6): 1461~1738. 

    3. [3]

      R Atkinson, D L Baulch, R A Cox et al. J. Phys. Chem. Ref. Data, 1992, 21(6): 1125~1568. 

    4. [4]

      W B DeMore, S P Sander, D M Golden et al. Jet Propuls. Lab. Publ., 1997, 97(4): 1~266.

    5. [5]

      R Atkinson, D L Baulch, R A Cox, et al. IUPAC Subcommittee on gas kinetic data evaluation for Atmospheric Chemistry, 2001, 20. 

    6. [6]

      S S Brown, A R Ravishankara, H Stark. J. Phys. Chem. A, 2000, 104(30): 7044~7052.

    7. [7]

      N S Wang, C J Howard. J. Phys. Chem., 1990, 94(25): 8787~8794. 

    8. [8]

       

    9. [9]

      L F Chen, D Han, J H Tao et al. J. Remote Sens., 2009, 13(3): 343~354. 

    10. [10]

      B Langmann, A Heil. Atmos. Chem. Phys., 2004, 4(8): 2145~2160.

    11. [11]

      G S Tyndall, A R Ravishankara. Int. J. Chem. Kinet., 2010, 23(6): 483~527. 

    12. [12]

      R Atkinson, D L Baulch, R A Cox et al. J. Phys. Chem. Ref. Data, 1989, 21(2): 115~150. 

    13. [13]

      R Atkinson, D L Baulch, R A Cox et al. J. Phys. Chem. Ref. Data, 1997, 26(6): 1329~1499. 

    14. [14]

      K V Gothelf, K A Jørgensen. Chem. Rev., 1998, 98(2): 863~909. 

    15. [15]

      O Tishchenko, S Ilieva, D G Truhlar. J. Chem. Phys., 2010, 133(2): 021102.

    16. [16]

      J Z Gillies, C W Gillies, F J Lovas et al. J. Am. Chem. Soc., 1989, 113(17): 6408~6415.

    17. [17]

      B Qi, X H Lu, S Y Fang et al. J. Mol. Catal. A, 2011, 334(1-2): 44~51. 

    18. [18]

      M J Frisch, G W Trucks, J A Pople et al. Gaussian 09, revision A. 01[CP]; Gaussian Inc.: Pittsburgh, PA, 2009. 

    19. [19]

      R A B Bond, B S Martincigh, J R Mika et al. J. Chem. Educat., 1998, 75(9): 1158~1165.

    20. [20]

      R Gutbrod, E Kraka, R N Schindler et al. J. Am. Chem. Soc., 1997, 119(31): 7330~7342.

    21. [21]

      J M Anglada, V M Domingo. J. Phys. Chem. A, 2005, 109(47): 10786~10794.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    11. [11]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(8)
  • Abstract views(606)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return