Citation: WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 271-278. shu

Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry

  • Corresponding author: WU Jun-hong, garywu@zju.edu.cn
  • Received Date: 15 October 2018
    Revised Date: 13 January 2019

Figures(8)

  • Xiaolongtan lignite was upgraded by hydrothermal dewatering (HTD). The main factors affecting slurry-ability of the lignite including coal property, oxygen functional groups, surface hydrophilicity, and particle size distribution were analyzed. The effect of HTD on solid concentration, rheology, and stability of the upgraded coal was also investigated. The results show that a substantial amount of moisture was removed, oxygen content decreased, and the coal rank was enhanced by HTD upgrading. The contact angle between coal and water increased after removal of oxygen functional groups by HTD, thereby improving surface property of the upgraded lignite. A typical bimodal distribution of the lignite particle size was observed. The mean particle diameter of lignite decreased and the lignite particles became more regular after HTD. HTD upgrading significantly improved slurry-ability of the lignite. The solid concentration of raw coal was 44.09%, while that of the upgraded coal after HTD increased to 61.94%. The consistency coefficient K decreased, while the rheological index n increased for the CWS prepared from the upgraded coals. HTD upgrading decreased the apparent viscosity, and maintained the shear-thinning behavior of pseudo-plastic fluid. Moreover, as the water separation ratio decreased and formation of hard sedimentation was delayed, stability of the CWS was enhanced after HTD upgrading. Overall, the physico-chemical properties of Xiaolongtan lignite were significantly modified after HTD, thus a high-quality slurry fuel with high solid concentration, superior pseudo-plastic behavior, and good stability could be achieved.
  • 加载中
    1. [1]

      BAI Xiang-fei. Discussion on utilization and development of improving quality technology of lignite and low rank bituminous coal in China[J]. Coal Qual Technol, 2010(6):9-11. doi: 10.3969/j.issn.1007-7677.2010.06.003

    2. [2]

      WILLSON W G, WALSH D A N, IRWINC W. Overview of low-rank coal (LRC) drying[J]. Coal Prep, 1997,18(1/2):1-15.  

    3. [3]

      YU Yu-jie, LIU Jian-zhong, WANG Chuan-cheng, HU Ya-xuan, ZHOU Jun-hu, CEN Ke-fa. Status quo of development in dewatering for upgrading low rank coal[J]. Therm Power Gener, 2011,40(9):1-4. doi: 10.3969/j.issn.1002-3364.2011.09.001

    4. [4]

      ZHANG Da-zhou, LU Wen-xin, CHEN Feng-jing, XIA Wu, ZUO Jing, WANG Zhi-gang, SHANG Kuan-xiang. Recent developments in recovery and utilization of water and heat from lignite dewatering[J]. Chem Ind Eng Prog, 2016,35(2):472-478.  

    5. [5]

      YU J, TAHMASEBI A, HAN Y, YIN F, LI X. A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106:9-20. doi: 10.1016/j.fuproc.2012.09.051

    6. [6]

      WANG Chuan-cheng, LIU Jian-zhong, YU Yu-jie, LUO Lu-lin, CHENG Jun, ZHOU Jun-hu, CEN Ke-fa. Slurryability of coal water slurry prepared by Inner Mongolia brown coal[J]. Proc CSEE, 2010,30(S1):85-90.  

    7. [7]

      WU J, LIU J, YUAN S, ZHANG X, LIU Y, WANG Z, ZHOU J. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy Fuels, 2015,29(10):6586-6592. doi: 10.1021/acs.energyfuels.5b01258

    8. [8]

      YU Y, LIU J, CEN K. Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J]. Ind Eng Chem Res, 2014,53(11):4511-4517. doi: 10.1021/ie5000592

    9. [9]

      MORIMOTO M, NAKAGAWA H, MIURA K. Low rank coal upgrading in a flow of hot water[J]. Energy Fuels, 2009,23(9):4533-4539. doi: 10.1021/ef9004412

    10. [10]

      NONAKA M, HIRAJIMA T, SASAKI K. Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment[J]. Fuel, 2011,90(8):2578-2584. doi: 10.1016/j.fuel.2011.03.028

    11. [11]

      LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016,178:85-92. doi: 10.1016/j.fuel.2016.03.045

    12. [12]

      UMAR D F, SANTOSO B, USUI H. The effect of upgrading processes on combustion characteristics of berau coal[J]. Energy Fuels, 2007,21(6):3385-3387. doi: 10.1021/ef070061j

    13. [13]

      LIU M, LI J, DUAN Y. Effects of solvent thermal treatment on the functional groups transformation and pyrolysis kinetics of Indonesian lignite[J]. Energy Convers Manage, 2015,103:66-72. doi: 10.1016/j.enconman.2015.06.047

    14. [14]

      GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Influence of the hydrothermal dewatering on the gasification characteristics of typical Chinese lignite[J]. Proc CSEE, 2013,33(32):14-20.  

    15. [15]

      GE L, ZHANG Y, XU C, WANG Z, ZHOU J, CEN K. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Appl Therm Eng, 2015,90:174-181. doi: 10.1016/j.applthermaleng.2015.07.015

    16. [16]

      SONG Cheng-jian, QU Jian-lin, YANG Zhi-yuan, WANG Guang-heng, YANG Fu-sheng, ZHOU An-ning. Matching rules between dispersants and Shenfu coal slurryability[J]. J Chem Ind Eng, 2016,67(9):3965-3971.  

    17. [17]

      YU Chi-wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Study on the properties of coal water slurry prepared with different coal ranks[J]. J Fuel Chem Technol, 2005,33(2):155-160. doi: 10.3969/j.issn.0253-2409.2005.02.006

    18. [18]

      GENG W, KUMABE Y, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009,88(4):644-649. doi: 10.1016/j.fuel.2008.09.025

    19. [19]

      KADIOGLU Y, VARAMAZ M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignites[J]. Fuel, 2003,82(13):1685-1693. doi: 10.1016/S0016-2361(02)00402-7

    20. [20]

      LIU Meng, CHEN Liang-yong, DUAN Yu-feng. Influence of concentration and particle size distribution on viscosity prediction of coal slurry[J]. J Fuel Chem Technol, 2009,37(3):266-270. doi: 10.3969/j.issn.0253-2409.2009.03.003

    21. [21]

      GAO Zhi-fang, ZHU Shu-quan, WU Xiao-hua. Lignite upgrading modification affected to features of coal water mixture[J]. Coal Sci Technol, 2010,38(9):112-116.  

    22. [22]

      LIU Yu, LI Wei-dong, LIU Hai-feng. Co-slurry ability of dried sewage sludge and Shenfu coal[J]. J Fuel Chem Technol, 2010,38(6):656-659. doi: 10.3969/j.issn.0253-2409.2010.06.004

    23. [23]

      LIU Ming-qiang, LIU Jian-zhong, WANG Rui-kun, ZHOU Jun-hu, CEN Ke-fa. Effects of pyrolysis temperature on slurry ability of lignite semi-coke[J]. Proc CSEE, 2013,33(8):36-43.  

    24. [24]

      ROH N S, SHIN D H, KIM D C, KIM J D. Rheological behavior of coal-water mixtures.1. Effects of coal type, loading and particle-size[J]. Fuel, 1995,74(8):1220-1225. doi: 10.1016/0016-2361(95)00041-3

    25. [25]

      WU J H, LIU J Z, YU Y J, WANG R K, ZHOU J H, CEN K F. Improving slurryability, rheology, and stability of slurry fuel from blending petroleum coke with lignite[J]. Pet Sci, 2015,12(1):157-169. doi: 10.1007/s12182-014-0008-3

    26. [26]

      LIU Meng, DUAN Yu-feng, LI Hua-feng, MA Xiu-yuan. Analysis on co-slurryability and rheology of modified sludge and petroleum coke[J]. Proc CSEE, 2012,32(35):59-65.  

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    7. [7]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    10. [10]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

Metrics
  • PDF Downloads(16)
  • Abstract views(1706)
  • HTML views(286)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return