Citation: WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 271-278. shu

Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry

  • Corresponding author: WU Jun-hong, garywu@zju.edu.cn
  • Received Date: 15 October 2018
    Revised Date: 13 January 2019

Figures(8)

  • Xiaolongtan lignite was upgraded by hydrothermal dewatering (HTD). The main factors affecting slurry-ability of the lignite including coal property, oxygen functional groups, surface hydrophilicity, and particle size distribution were analyzed. The effect of HTD on solid concentration, rheology, and stability of the upgraded coal was also investigated. The results show that a substantial amount of moisture was removed, oxygen content decreased, and the coal rank was enhanced by HTD upgrading. The contact angle between coal and water increased after removal of oxygen functional groups by HTD, thereby improving surface property of the upgraded lignite. A typical bimodal distribution of the lignite particle size was observed. The mean particle diameter of lignite decreased and the lignite particles became more regular after HTD. HTD upgrading significantly improved slurry-ability of the lignite. The solid concentration of raw coal was 44.09%, while that of the upgraded coal after HTD increased to 61.94%. The consistency coefficient K decreased, while the rheological index n increased for the CWS prepared from the upgraded coals. HTD upgrading decreased the apparent viscosity, and maintained the shear-thinning behavior of pseudo-plastic fluid. Moreover, as the water separation ratio decreased and formation of hard sedimentation was delayed, stability of the CWS was enhanced after HTD upgrading. Overall, the physico-chemical properties of Xiaolongtan lignite were significantly modified after HTD, thus a high-quality slurry fuel with high solid concentration, superior pseudo-plastic behavior, and good stability could be achieved.
  • 加载中
    1. [1]

      BAI Xiang-fei. Discussion on utilization and development of improving quality technology of lignite and low rank bituminous coal in China[J]. Coal Qual Technol, 2010(6):9-11. doi: 10.3969/j.issn.1007-7677.2010.06.003

    2. [2]

      WILLSON W G, WALSH D A N, IRWINC W. Overview of low-rank coal (LRC) drying[J]. Coal Prep, 1997,18(1/2):1-15.  

    3. [3]

      YU Yu-jie, LIU Jian-zhong, WANG Chuan-cheng, HU Ya-xuan, ZHOU Jun-hu, CEN Ke-fa. Status quo of development in dewatering for upgrading low rank coal[J]. Therm Power Gener, 2011,40(9):1-4. doi: 10.3969/j.issn.1002-3364.2011.09.001

    4. [4]

      ZHANG Da-zhou, LU Wen-xin, CHEN Feng-jing, XIA Wu, ZUO Jing, WANG Zhi-gang, SHANG Kuan-xiang. Recent developments in recovery and utilization of water and heat from lignite dewatering[J]. Chem Ind Eng Prog, 2016,35(2):472-478.  

    5. [5]

      YU J, TAHMASEBI A, HAN Y, YIN F, LI X. A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106:9-20. doi: 10.1016/j.fuproc.2012.09.051

    6. [6]

      WANG Chuan-cheng, LIU Jian-zhong, YU Yu-jie, LUO Lu-lin, CHENG Jun, ZHOU Jun-hu, CEN Ke-fa. Slurryability of coal water slurry prepared by Inner Mongolia brown coal[J]. Proc CSEE, 2010,30(S1):85-90.  

    7. [7]

      WU J, LIU J, YUAN S, ZHANG X, LIU Y, WANG Z, ZHOU J. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy Fuels, 2015,29(10):6586-6592. doi: 10.1021/acs.energyfuels.5b01258

    8. [8]

      YU Y, LIU J, CEN K. Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J]. Ind Eng Chem Res, 2014,53(11):4511-4517. doi: 10.1021/ie5000592

    9. [9]

      MORIMOTO M, NAKAGAWA H, MIURA K. Low rank coal upgrading in a flow of hot water[J]. Energy Fuels, 2009,23(9):4533-4539. doi: 10.1021/ef9004412

    10. [10]

      NONAKA M, HIRAJIMA T, SASAKI K. Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment[J]. Fuel, 2011,90(8):2578-2584. doi: 10.1016/j.fuel.2011.03.028

    11. [11]

      LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016,178:85-92. doi: 10.1016/j.fuel.2016.03.045

    12. [12]

      UMAR D F, SANTOSO B, USUI H. The effect of upgrading processes on combustion characteristics of berau coal[J]. Energy Fuels, 2007,21(6):3385-3387. doi: 10.1021/ef070061j

    13. [13]

      LIU M, LI J, DUAN Y. Effects of solvent thermal treatment on the functional groups transformation and pyrolysis kinetics of Indonesian lignite[J]. Energy Convers Manage, 2015,103:66-72. doi: 10.1016/j.enconman.2015.06.047

    14. [14]

      GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Influence of the hydrothermal dewatering on the gasification characteristics of typical Chinese lignite[J]. Proc CSEE, 2013,33(32):14-20.  

    15. [15]

      GE L, ZHANG Y, XU C, WANG Z, ZHOU J, CEN K. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Appl Therm Eng, 2015,90:174-181. doi: 10.1016/j.applthermaleng.2015.07.015

    16. [16]

      SONG Cheng-jian, QU Jian-lin, YANG Zhi-yuan, WANG Guang-heng, YANG Fu-sheng, ZHOU An-ning. Matching rules between dispersants and Shenfu coal slurryability[J]. J Chem Ind Eng, 2016,67(9):3965-3971.  

    17. [17]

      YU Chi-wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Study on the properties of coal water slurry prepared with different coal ranks[J]. J Fuel Chem Technol, 2005,33(2):155-160. doi: 10.3969/j.issn.0253-2409.2005.02.006

    18. [18]

      GENG W, KUMABE Y, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009,88(4):644-649. doi: 10.1016/j.fuel.2008.09.025

    19. [19]

      KADIOGLU Y, VARAMAZ M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignites[J]. Fuel, 2003,82(13):1685-1693. doi: 10.1016/S0016-2361(02)00402-7

    20. [20]

      LIU Meng, CHEN Liang-yong, DUAN Yu-feng. Influence of concentration and particle size distribution on viscosity prediction of coal slurry[J]. J Fuel Chem Technol, 2009,37(3):266-270. doi: 10.3969/j.issn.0253-2409.2009.03.003

    21. [21]

      GAO Zhi-fang, ZHU Shu-quan, WU Xiao-hua. Lignite upgrading modification affected to features of coal water mixture[J]. Coal Sci Technol, 2010,38(9):112-116.  

    22. [22]

      LIU Yu, LI Wei-dong, LIU Hai-feng. Co-slurry ability of dried sewage sludge and Shenfu coal[J]. J Fuel Chem Technol, 2010,38(6):656-659. doi: 10.3969/j.issn.0253-2409.2010.06.004

    23. [23]

      LIU Ming-qiang, LIU Jian-zhong, WANG Rui-kun, ZHOU Jun-hu, CEN Ke-fa. Effects of pyrolysis temperature on slurry ability of lignite semi-coke[J]. Proc CSEE, 2013,33(8):36-43.  

    24. [24]

      ROH N S, SHIN D H, KIM D C, KIM J D. Rheological behavior of coal-water mixtures.1. Effects of coal type, loading and particle-size[J]. Fuel, 1995,74(8):1220-1225. doi: 10.1016/0016-2361(95)00041-3

    25. [25]

      WU J H, LIU J Z, YU Y J, WANG R K, ZHOU J H, CEN K F. Improving slurryability, rheology, and stability of slurry fuel from blending petroleum coke with lignite[J]. Pet Sci, 2015,12(1):157-169. doi: 10.1007/s12182-014-0008-3

    26. [26]

      LIU Meng, DUAN Yu-feng, LI Hua-feng, MA Xiu-yuan. Analysis on co-slurryability and rheology of modified sludge and petroleum coke[J]. Proc CSEE, 2012,32(35):59-65.  

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    5. [5]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    12. [12]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    18. [18]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    19. [19]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    20. [20]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

Metrics
  • PDF Downloads(16)
  • Abstract views(1829)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return