Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts
- Corresponding author: WANG Jun-wei, wangjw@sxicc.ac.cn
Citation:
CAO Yue-ling, WANG Jun-wei, KANG Mao-qing, ZHU Yu-lei. Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(7): 845-852.
HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007,107(6):2411-2502. doi: 10.1021/cr050989d
ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chem, 2008,10(10):1033-1037. doi: 10.1039/b808471h
FUKUOKA A, DHEPE P A. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006,45(31):5161-5163. doi: 10.1002/(ISSN)1521-3773
JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHEN J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008,120(44):8638-8641. doi: 10.1002/ange.v120:44
SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethlfurfural (HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009,361(1/2):117-122.
KUO I J, SUZUKI N, YAMAUCHI Y, WU K C. W. Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems[J]. RSC Adv, 2013,3(6):2028-2034. doi: 10.1039/C2RA21805D
ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012,2(8):1698-1702. doi: 10.1021/cs300342k
AN D L, YE A H, DENG W P, ZHANG Q H, WANG Y. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles[J]. Chem Eur J, 2012,18(10):2938-2947. doi: 10.1002/chem.201103262
SERRANO-RUIZ J C, BRADEN D J, WEST R M, DUMESIC J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Appl Catal B: Environ, 2010,100(1/2):184-189.
LIU Y, CHEN L G, WANG T J, ZHANG X H, LONG J X, ZHANG Q, MA L L. High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system[J]. RSC Adv, 2015,5(15):11649-11657. doi: 10.1039/C4RA14304C
REZAEI P S, SHAFAGHAT H, DAUD W M A W. Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: Effects of pore structure and acidity[J]. RSC Adv, 2015,5(80):65408-65414. doi: 10.1039/C5RA11332F
YUE H R, ZHAO Y J, MA X B, GONG J L. Ethylene glycol: Properties, synthesis, and applications[J]. Chem Soc Rev, 2012,41(11):4218-4244. doi: 10.1039/c2cs15359a
ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Commun, 2010,46(6):862-864. doi: 10.1039/B919182H
ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010,3(1):63-66. doi: 10.1002/cssc.v3:1
BAEK I G, YOU S J, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresour Technol, 2012,114:684-690. doi: 10.1016/j.biortech.2012.03.059
CAO Y L, WANG J W, LI Q F, YIN N, LIU Z M, KANG M Q, ZHU Y L. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. J Fuel Chem Technol, 2013,41(8):943-949. doi: 10.1016/S1872-5813(13)60041-9
CAO Y L, WANG J W, KANG M Q, ZHU Y L. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J]. J Mole Catal A: Gen, 2014,381:46-53. doi: 10.1016/j.molcata.2013.10.002
CAO Y L, WANG J W, KANG M Q, ZHU Y L. Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv, 2015,5(110):90904-90912. doi: 10.1039/C5RA15400F
LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem, 2012,124(13):3303-3307. doi: 10.1002/ange.v124.13
TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012,48(56):7052-7054. doi: 10.1039/c2cc32305b
ZHAO G H, ZHENG M Y, ZHANG J Y, WANG A Q, ZHANG T. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind Eng Chem Res, 2013,52(28):9566-9572. doi: 10.1021/ie400989a
ZHANG J Y, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE J, 2014,61(1):224-238.
ZHANG J Y, YANG X F, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Comparison of cellobiose and glucose transformation to ethylene glycol[J]. Chin J Catal, 2014,35(11):1811-1817. doi: 10.1016/S1872-2067(14)60151-0
ZHANG J Y, HOU B L, WANG X F, LI Z L, WANG A Q, ZHANG T. Inhibiting effect of tungstic compounds on glucose hydrogenation over Ru/C catalyst[J]. J Energ Chem, 2015,24(1):9-14. doi: 10.1016/S2095-4956(15)60278-9
WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013,46(7):1377-1386. doi: 10.1021/ar3002156
LUO C, WANG S, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew Chem Int Eng, 2007,46(40):7636-7639. doi: 10.1002/(ISSN)1521-3773
RINALDI R, SCHÜTH F. Design of solid catalysts for the conversion of biomass[J]. Energy Environ Sci, 2009,2(6):610-626. doi: 10.1039/b902668a
TAI Z J, ZHANG J Y, WANG A Q, PANG J F, ZHENG M Y, ZHANG T. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid[J]. Chem Sus Chem, 2013,6(4):652-658. doi: 10.1002/cssc.201200842
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Lei Zhang , Chenyang Kou , Kun Ni , Yiwen Chen , Tongchuan Zhang , Baoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
Jiahao Li , Guinan Chen , Chunhong Chen , Yuanyuan Lou , Zhihao Xing , Tao Zhang , Chengtao Gong , Yongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760
Yao-Yu Ma , Wen-Juan Shi , Gang-Ding Wang , Xin Liu , Lei Hou , Yao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
■: WO3/SBA-15; ●: WO3; ▲: AMT
■: WO3/SBA-15; ●: WO3; ▲: AMT