Citation: XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 688-696. shu

Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy

  • Corresponding author: XIA Sheng-jie, xiasj@zjut.edu.cn NI Zhe-ming, jchx@zjut.edu.cn
  • Received Date: 4 January 2019
    Revised Date: 5 March 2019

    Fund Project: Zhejiang Natural Science Foundation LQ15B030002The project was supported by the National Natural Science Foundation of China(21503188) and Zhejiang Natural Science Foundation (LQ15B030002)the National Natural Science Foundation of China 21503188

Figures(5)

  • The reaction path and the reaction mechanism of water gas shift reaction (WGSR) on the Cu-Pt-Au catalyst surface were investigated using density functional theory (DFT). The stability and electron activity of binary and ternary catalysts composed of Cu, Pt and Au were studied. The synergistic effect of Pt-Au catalyst in binary alloy is better, and the binding energy of Pt3-Au(111) surface is 77.15 eV, and energy level of d-band center is -3.18 eV. When the Pt3-Au(111) surface continues to be doped with Cu, the binding energy of Cu3-Pt3-Au(111) is 77. 99 eV and the center of d-band is -3. 05 eV according to the binding energy and density of stares. The energy barrier of CO oxidization is 4.84 eV in the redox mechanism. The reaction is not easy to follow the redox mechanism. Moreover, the two intermediates CHO and COOH are competitive, the energy barrier of forming COOH is larger than that of forming CHO, the reaction is more easily carried out according to the formic acid mechanism.
  • 加载中
    1. [1]

      JAMES J S. Catalysis in the development of clean energy technologies[J]. Catal Today, 2005,100(1):171-180.  

    2. [2]

      ROZOVSKII A Y, LIN G I. Fundamentals of methanol synthesis and decomposition[J]. Top Catal, 2003,22(3):137-150.  

    3. [3]

      AMMAL S C, HEYDEN A. Water-gas shift catalysis at corner atoms of Pt clusters in contact with a TiO2 (110) support surface[J]. ACS Catal, 2014,4(10):3654-3662. doi: 10.1021/cs5009706

    4. [4]

      CHOI Y, STENGER H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Appl Catal B:Environ, 2002,38(4):259-269. doi: 10.1016/S0926-3373(02)00054-1

    5. [5]

      WANG C Q, REN F F, ZHAI C Y, ZHANG K, YANG B B, BIN D, WANG H W, YANG P, DU Y K. Au-Cu-Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity[J]. Rsc Adv, 2014,4(11):57600-57607.  

    6. [6]

      GUO Z, LIU B, ZHANG Q H, DENG W P, WANG Y, YANG Y H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chem Soc Rev, 2014,43(1):3480-3524.  

    7. [7]

      THUY-DUONG N, ASHLEIGH E B, JOSÉ A R, SANJAYA D S. Au and Pt nanoparticle supported catalysts tailored for H2 production:From models to powder catalysts[J]. Appl Catal A:Gen, 2016,518(25):18-47.

    8. [8]

      YU Q Q, CHEN W, LI Y, JIN Y, SUO Z H. The action of Pt in bimetallic Au-Pt/CeO2 catalyst for water-gas shift reaction[J]. Catal Today, 2010,158(3):324-328.  

    9. [9]

      KONG G X, MA X J, LIU Q J, LI Y, LIU Z T. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations[J]. Physica B, 2018,533(15):58-62.  

    10. [10]

      MUHAMMAD A S, AKHTAR H, MUHAMMAD S, ORTWIN L, ALEXANDRE A. DFT study of synergistic catalysis of the water-gas-shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016,8(6):1208-1217. doi: 10.1002/cctc.201501312

    11. [11]

      XU Y, ZHANG B. Recent advances in porous Pt-based nanostructures:Synthesis and electrochemical applications[J]. Chem Soc Rev, 2014,43(8):2439-2450. doi: 10.1039/c3cs60351b

    12. [12]

      SOHN Y, JI B J, PIL K. Chemically dealloyed Pt-Au-Cu ternary electrocatalysts with enhanced stability in electrochemical oxygen reduction[J]. Res Chem Interm, 2018,44(6):3697-3712. doi: 10.1007/s11164-018-3375-3

    13. [13]

      BRAULT P, COUTANCEAU C, JENNINGS P C, VEGGE T, BERNDT J, CAILLARD A, BARANTON S, LANKIANG S. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth[J]. Int J Hydrogen Energy, 2016,41(47):22589-22597. doi: 10.1016/j.ijhydene.2016.08.035

    14. [14]

      GUO W L, LIAN X, XIAO P, LIU F L, YANG Y, ZHANG Y H, ZHANG X X. DFT studies on the interaction of PtxRuyMz(M=Fe, Ni, Cu, Mo, Sn, x+y+z=4, x ≥ 1, y ≥ 1) alloy clusters with O2[J]. Mol Phys, 2015,113(8):854-865. doi: 10.1080/00268976.2014.983573

    15. [15]

      ZHANG Y Z, GU Y, LIN S X, WEI J P, WANG Z H, WANG C M, DU Y L, YE W C. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity[J]. Electrochim Acta, 2011,56(24):8746-8751. doi: 10.1016/j.electacta.2011.07.094

    16. [16]

      HONG W, WANG J, WANG E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation[J]. Small, 2014,10(16):3262-3265. doi: 10.1002/smll.v10.16

    17. [17]

      GHOLIZADEH R, YU Y X. N2O + CO reaction over Si-and Se-doped graphenes:An ab initio DFT study[J]. Appl Surf Sci, 2015,357(1):1187-1195.  

    18. [18]

      ZHANG Tian, GUO Chen, WEI Shu-xian, WU Zhong-hua, HAN Zhao-xiang, LU Xiao-qing. Investigation on CH3SH desulfurization mechanism at the edge site of Co-doped MoS2 cluster[J]. Acta Chim Sin, 2018,76(1):62-67.  

    19. [19]

      QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017,45(1):34-42. doi: 10.3969/j.issn.0253-2409.2017.01.006 

    20. [20]

      GOVIND N, PETERSEN M, FITZGERAL G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003,28(2):250-258. doi: 10.1016/S0927-0256(03)00111-3

    21. [21]

      VINEYARD G H. Frequency factors and isotope effects in solid state rate processes[J]. J Phys Chem Solids, 1957,3(1):121-127.  

    22. [22]

      PISKORZ W, ZASADA F, STELMACHOWSKI P, DIWALD O, KOTARBA A, SOJKA Z. Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to Ab initio microkinetics[J]. J Phys Chem C, 2011,115(45):22451-22460. doi: 10.1021/jp2070826

    23. [23]

      JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016,32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    24. [24]

      WU G H, SUN Y, WU X, CHEN R, WANG Y. Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms[J]. Chem Phys Lett, 2017,686(16):103-110.  

    25. [25]

      TAO Jie, YAO Zheng-jun, XUE Feng. Fundamentals of Material Science[M]. Beijing:Chemical Industry Press, 2006, 50-51.

    26. [26]

      SUSAN M A, RYAN L A, KOJI S, RYO K, KAZUKI K, NGUYEN H L, HIROSHI N, HIDEAKI K. First principles calculations of transition metal binary alloys:Phase stability and surface effects[J]. J Electron Mater, 2017,46(6):3776-3783. doi: 10.1007/s11664-017-5402-3

    27. [27]

      HUANG Min, XU Chang, CHENG Long-jiu. Density functional theory studies of the binary systems[BxAl13-x]-(x=0-13)[J]. Acta Chim Sin, 2016,74(9):758-763.  

    28. [28]

      QIAN Meng-dan, LUO Wei, NI Zhe-ming, XIA Sheng-jie, XUE Ji-long, JIANG Jun-hui. Comparative study on the properties and adsorption of furfural of Pd(111) surface before and after Ru modification[J]. Chem J Chin Univ, 2017,38(9):1611-1618.  

    29. [29]

      CHANG F F, SHAN S Y, VALERI P, ZAKIYA S, AOLIN L, JONATHAN R, WU J F, LUO J, YU G, REN Y, ZHONG C J. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis[J]. J Am Chem Soc, 2016,138(37):12166-12175. doi: 10.1021/jacs.6b05187

    30. [30]

      PALOTAS K, BAKO I, BUGYI L. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst:A DFT study[J]. Appl Surf Sci, 2016,389(15):1094-1103.  

    31. [31]

      JALILI S, ISFAHANI-ZEINI A, HABIBPOUR R. DFT investigations on the interaction of oxygen reduction reaction intermediates with Au (100) and bimetallic Au/M (100) (M=Pt, Cu, and Fe) surfaces[J]. Comput Theor Chem, 2013,4(1):18-26.  

    32. [32]

      HAMED A, MAJID V. Computational designing ultra-sensitive nano-composite based on boron doped and CuO decorated graphene to adsorb H2S and CO gaseous molecules[J]. Mater Res Express, 2017,4(7):1-7.  

    33. [33]

      LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013,1019(1):141-145.  

    34. [34]

      AMIT A G, JAMES A D, MANOS M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J Am Chem Soc, 2008,130(4):1402-1414. doi: 10.1021/ja0768237

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(14)
  • Abstract views(1575)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return