Citation: WANG Jin-xing, ZHAO Hai-bo. Oxidation kinetics of adsorbent-decorated Fe-based oxygen carrier for chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1457-1463. shu

Oxidation kinetics of adsorbent-decorated Fe-based oxygen carrier for chemical-looping combustion

  • Corresponding author: ZHAO Hai-bo, klinsmannzhb@163.com
  • Received Date: 4 July 2016
    Revised Date: 23 September 2016

Figures(7)

  • Adsorbent-decorated Fe2O3/Al2O3 as oxygen carrier (OC) was proposed for restraining the emission of chloride, sulfide and heavy metals during the chemical-looping combustion process of gaseous or solid fuels. Three adsorbents (K2O, Na2O and CaO) were selected for decorating these OC particles. First, the raw Fe2O3/Al2O3 and three adsorbent-decorated Fe2O3/Al2O3 were reduced by synthesis gas and then the oxidation kinetics of four reduced OCs (raw FeO/Al2O3 and three adsorbent-decorated FeO/Al2O3) were investigated by using thermogravimetric analysis (TGA) technique in air atmosphere at four temperatures (850, 875, 900 and 925℃). It was found that the translation of FeO to Fe2O3 can be described by the phase boundary-controlled (contracting cylinder) model, and the apparent activation energy (E) was calculated to be 13.71, 20.21, 21.62 and 24.20 kJ/mol for raw FeO/Al2O3, K2O-decorated FeO/Al2O3, Na2O-decorated FeO/Al2O3 and CaO-decorated FeO/Al2O3, respectively. Last, the reaction mechanism was evaluated through comparing the calculated data from the obtained kinetic parameters and the experimental results, which demonstrated the reliability of the phase boundary-controlled (contracting cylinder) model.
  • 加载中
    1. [1]

      SAHIR A H, LIGHTY J S, SOHN H Y. Kinetics of copper oxidation in the air reactor of a chemical looping combustion system using the law of additive reaction times[J]. Ind Eng Chem Res, 2011,50(23):566-580.  

    2. [2]

      NASR S, PLUCKNETT K P. Kinetics of iron ore reduction by methane for chemical looping combustion[J]. Energy Fuels, 2014,28(2):1387-1395. doi: 10.1021/ef402142q

    3. [3]

      DUESO C, ORTIZ M, ABAD A, GARCIA-LABIANO F, DE DIEGO L F, GAYAN P, ADANEZ J. Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming[J]. Chem Eng J, 2012,188(16):142-154.  

    4. [4]

      XIAO R, CHEN L Y, SAHA C, ZHANG S. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. Inter J Greenh Gas Con, 2012,10(5):363-373.  

    5. [5]

      BERGUERAND N, LYNGFELT A. Design and operation of a 10kWth chemical-looping combustor for solid fuels-Testing with South African coal[J]. Fuel, 2008,87(12):2713-2726. doi: 10.1016/j.fuel.2008.03.008

    6. [6]

      YU Z L, LI C Y, FANG Y T, HUANG J J, WANG Z Q. Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier[J]. Energy Fuels, 2012,26(4):128-134.  

    7. [7]

      GU H M, SHEN L H, XIAO J, ZHANG S W, SONG T, CHEN D Q. Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal[J]. Combust Flame, 2012,159(7):2480-2490. doi: 10.1016/j.combustflame.2012.03.013

    8. [8]

      XIAN R, SONG Q L, SONG M, LU Z J, ZHANG S A, SHEN L H. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier[J]. Combust Flame, 2010,157(6):1140-1153. doi: 10.1016/j.combustflame.2010.01.007

    9. [9]

      SONG T, SHEN T X, SHEN L H, XIAN J, GU H M, ZHANG S W. Evaluation of hematite oxygen carrier in chemical-looping combustion of coal[J]. Fuel, 2013,104(2):244-252.  

    10. [10]

      PECHO J, SCHILDHAUER T J, STURZENEGGER A, BIOLLAZ S, WOKAUN A. Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor[J]. Chem Eng Sci, 2008,63(9):2465-2476. doi: 10.1016/j.ces.2008.02.001

    11. [11]

      ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008,82(1):1-9. doi: 10.1016/j.jaap.2007.11.011

    12. [12]

      SOLUNKE R D, VESER G. Integrating desulfurization with CO2-capture in chemical-looping combustion[J]. Fuel, 2011,90(2):608-617. doi: 10.1016/j.fuel.2010.09.039

    13. [13]

      TAFUR-MARINOS J A, GINEPRO M, PASTERRO L, TORAZZO A, PASCHETTA E, FABBRI D, ZELANO V. Comparison of inorganic constituents in bottom and fly residues from pelletised wood pyro-gasification[J]. Fuel, 2014,119(1):157-162.  

    14. [14]

      WANG J X, ZHAO H B. Chemical looping dechlorination through adsorbent-decorated Fe2O3/Al2O3 oxygen carriers[J]. Combust Flame, 2015,162(10):3503-3515. doi: 10.1016/j.combustflame.2015.06.008

    15. [15]

      GU H M, SHEN L H, XIAO J, ZHANG S W, SONG T, CHEN D Q. Evaluation of the effect of sulfur on iron-ore oxygen carrier in chemical-looping combustion[J]. Ind Eng Chem Res, 2013,52(5):1795-1805. doi: 10.1021/ie303023w

    16. [16]

      HAN Y, HWANG G, KIM D, PARK S, KIM H. Porous Ca-based bead sorbents for simultaneous removal of SO2,fine particulate matters,and heavy metals from pilot plant sewage sludge incineration[J]. J Hazard Mater, 2015,283:44-52. doi: 10.1016/j.jhazmat.2014.09.009

    17. [17]

      NOWAK B, PESSL A, ASCHENBRENNER P, SZENTANNAI P, MATTENBERGER H, RECHBERGER H, HERMANN L, WINTER F. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment[J]. J Hazard Mater, 2010,179(1/3):323-331.  

    18. [18]

      LIU Z S, PENG T H, LIN C L. Effects of bed material size distribution,operating conditions and agglomeration phenomenon on heavy metal emission in fluidized bed combustion process[J]. Waste Manage, 2012,32(3):417-425. doi: 10.1016/j.wasman.2011.10.033

    19. [19]

      ZHANG Y X, DOROODCHI E, MOGHTADERI B. Reduction Kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion[J]. Energy Fuels, 2015,29(1):337-345. doi: 10.1021/ef5024252

    20. [20]

      MONAZAM E R, BREAULT R W, SIRIWARDANE R, MILLER D D. Thermogravimetric analysis of modified hematite by methane (CH4) for chemical-looping combustion:A global kinetics mechanism[J]. Ind Eng Chem Res, 2013,52(42):14808-14816. doi: 10.1021/ie4024116

    21. [21]

      MONAZAM E R, BREAULT R W, SIRIWARDANE R. Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion[J]. Ind Eng Chem Res, 2014,53(34):13320-13328.

    22. [22]

      MONAZAM E R, BREAULT R W, SIRIWARDANE R. Kinetics of hematite to wustite by hydrogen for chemical looping combustion[J]. Energy Fuels, 2014,28(8):5406-5414. doi: 10.1021/ef501100b

    23. [23]

      WANG C B, WANG J X, LEI M, GAO H N. Investigations on combustion and NO emission characteristics of coal and biomass blends[J]. Energy Fuels, 2013,27(10):6185-6190. doi: 10.1021/ef401589k

    24. [24]

      CHIU P C, KU Y, WU H C, KUO Y L, TSENG Y H. Chemical looping combustion of polyurethane and polypropylene in an annular dual-tube moving bed reactor with iron-based oxygen carrier[J]. Fuel, 2014,135(11):146-152.

    25. [25]

      MONAZAM E R, BREAULT R W, SIRIWARDANE R, RICHARDS G, CARPENTER S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion:A global mechanism[J]. Chem Eng J, 2013,232:478-487. doi: 10.1016/j.cej.2013.07.091

    26. [26]

      XIONG Shao-wu, ZHANG Shou-yu, WU Qiao-mei, GUO Xi, DONG Ai-xia, CHEN Chuan, ZHENG Hong-jun, DENG Wen-xiang, LIU Da-hai, TANG Wen-jiao. Investigation on combustion characteristics and kinetics of bio-char[J]. J Fuel Chem Technol, 2013,41(8):958-965.  

    27. [27]

      WU Hong-xiang, LI Hai-bin, ZHAO Zeng-li. Thermogravimetric analysis and pyrolytic kinetic study on coal/biomass blends[J]. J Fuel Chem Technol, 2009,37(5):538-545.  

  • 加载中
    1. [1]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    2. [2]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    3. [3]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(2)
  • Abstract views(719)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return