Citation: JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 961-969. shu

Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters

  • Corresponding author: NI Zhe-ming, jchx@zjut.edu.cn
  • Received Date: 15 March 2016
    Revised Date: 25 April 2016

Figures(9)

  • The behaviors of thiophene adsorption and hydrodesulfurization on cubic octahedral M13 (M=Au, Pt) clusters were investigated by density functional theory. The results show that the adsorption energy of thiophene on Pt13 is higher than that on Au13; on the Au13 cluster, the Hol-tri site is most stable for the thiophene adsorption with ring, whereas on the Pt13 cluster, the Hol-quadr site is most stable. By the indirect desulfurization mechanism, the desulfurization is achieved probably via the cis-hydrogenation; the removal of C-S is the rate-determining step. By the direct desulfurization mechanism, the HS hydrogenation turns to be the rate-determining step. The desulfurization is most likely via the direct desulfurization mechanism, which exhibits much lower activation energy than the indirect desulfurization mechanism. The energy change for thiophene desulfurization on the Au13 cluster is exothermic, whereas on the Pt13 cluster it is endothermic; as a result, the hydrodesulfurization on Au13 is much easier than that on Pt13.
  • 加载中
    1. [1]

      BASTON E P, FRANCA A B, NETO A V D, URQUIETA-GONZALEZ E A. Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol-gel prepared gamma-Al2O3-ZrO2 supports-Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization[J]. Catal Today, 2015,246:184-190. doi: 10.1016/j.cattod.2014.10.035

    2. [2]

      LIAO C N, WANG J Y, LI B. Mechanism of Mo-catalyzed C-S cleavage of thiophene[J]. J Organomet Chem, 2014,749:275-286. doi: 10.1016/j.jorganchem.2013.10.013

    3. [3]

      ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015,43(7):862-869.  

    4. [4]

      LIU Li-hua, LIU Shu-qun, YIN Hai-liang, LIU Yun-qi, LIU Chen-guang. Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J]. J Fuel Chem Technol, 2015,43(6):708-713. doi: 10.1016/S1872-5813(15)30022-0

    5. [5]

      SHAN J, TENHU H. Recent advances in polymer protected gold nanoparticles:Synthesis, properties and applications[J]. Chem Commun, 2007,44:4580-4598.

    6. [6]

      CORMA A, SERNA P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts[J]. Science, 2006,313(5785):332-334. doi: 10.1126/science.1128383

    7. [7]

      LI X H, ZHENG W L, PAN H Y, YU Y, CHEN L, WU P. Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation[J]. J Catal, 2013,300:9-19. doi: 10.1016/j.jcat.2012.12.007

    8. [8]

      RAMOS-FERNANDEZ E V, PIETERS C, VAN DER LINDEN B, JNAN-ALCANIZ J, SERRA-CRESPO P, VERHOEVEN M W G M, NIEMANTSVERDRIET H, GASCON J, KAPTEIJN F. Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid-Characterization and catalytic performance[J]. J Catal, 2012,289:42-52. doi: 10.1016/j.jcat.2012.01.013

    9. [9]

      LUO S R, CHEN S Z, HSU Y H, YAU S L, LIN Y J, HUANG P Y, CHEN M C. In situ scanning tunneling microscopy characterization of thienothiophene-based semiconducting organic molecules adsorbed on a Au (111) electrode[J]. Surf Sci, 2013,616:155-160. doi: 10.1016/j.susc.2013.05.013

    10. [10]

      WANG H M, LGLESIA E. Mechanism and site requirements of thiophene hydrodesulfurization catalyzed by supported Pt clusters[J]. Chemcatchem, 2011,3(7):1166-1175. doi: 10.1002/cctc.v3.7

    11. [11]

      ZHU H Y, GUO W Y, JIANG R B, ZHAO L M, LU X Q, LI M, FU D L, SHAN H H. Decomposition of methanthiol on Pt (111):A density functional investigation[J]. Langmuir, 2010,26(14):12017-12025. doi: 10.1021/la101678d

    12. [12]

      NI Zhe-ming, SHI Wei, XIA Ming-yu, XUE Ji-long. Theoretical studies on reaction mechanism of hydrodesulfurization of thiophene catalyzed by Au (111) plane[J]. Chem J Chin Univ, 2013,34(10):2353-2362.  

    13. [13]

      LI Z, CHEN Z X, HE X, KANG G J. Theoretical studies of acrolein hydrogenation on Au-20 nanoparticle[J]. J Chem Phys, 2010,132(18)184702. doi: 10.1063/1.3407439

    14. [14]

      IMADA Y, OSAKI M, NOGUCHI M, MAEDA T, FUJIKI M, KAWAMORITA S, KOMIYA N, NAOTA T. Flavin-functionalized gold nanoparticles as an efficient catalyst for aerobic organic transformations[J]. ChemCatChem, 2015,7(1):99-106. doi: 10.1002/cctc.v7.1

    15. [15]

      BUCHWALTER P, ROSE J, BRAUNSTEIN P. Multimetallic catalysis based on heterometallic complexes and clusters[J]. Chem Rev, 2015,115(1):28-126. doi: 10.1021/cr500208k

    16. [16]

      LARSSON J A, NOLAN M, GREER J C. Interactions between thiol molecular linkers and the Au-13 nanoparticle[J]. J Phys Chem B, 2002,106(23):5931-5937. doi: 10.1021/jp014483k

    17. [17]

      XU Kun, FENG Jie, CHU Qi, ZHANG Li-li, LI Wen-ying. Density function theory study of thiophene hydrodesulfurization onγ-Mo2N (100) surface[J]. Acta Phys Chim Sin, 2014,30(11):2063-2070.

    18. [18]

      HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B, 1999,59(11):7413-7421. doi: 10.1103/PhysRevB.59.7413

    19. [19]

      JIANG Jun-hui, XIA Sheng-jie, NI Zhe-ming, ZHANG Lian-yang. Adsorption and selective hydrogenation mechanism of crotonaldehyde on Au (111) surface[J]. Chem J Chin Univ, 2016,37(4):693-700.  

    20. [20]

      DAI Guang-zhen, JIANG Xian-wei, XU Tai-long, LIU Qi, CHEN Jun-ning, DAI Yue-hua. Effect of oxygen vacancy on lattice and electronic properties of HFO2 by means of density function theory study[J]. Acta Phys Sin, 2015,64(3)033101.

    21. [21]

      GE Q, JENKINS S J, KING D A. Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J]. Chem Phys Lett, 2000,327(3/4):125-130.

    22. [22]

      DELLEY B. Fast calculation of electrostatics in crystals and large molecules[J]. J Phys Chem, 1996,100(15):6107-6110. doi: 10.1021/jp952713n

    23. [23]

      GULIAMOV O, FRENKEL A I, MENARD L D, NUZZO R G, KRONIK L. Tangential ligand-induced strain in Icosahedral Au-13[J]. J Am Chem Soc, 2007,129(36)10978. doi: 10.1021/ja0725706

    24. [24]

      APRA E, FORTUNELLI A. Density-functional calculations on platinum nanoclusters:Pt-13, Pt-38, and Pt-55[J]. J Phys Chem A, 2003,107(16):2934-2942. doi: 10.1021/jp0275793

    25. [25]

      MAGER-MAURY C, BONNARD G, CHIZALLET C, SAUTET P, RAYBAUD P. H-2-induced reconstruction of supported Pt clusters:Metal-support interaction versus surface hydride[J]. ChemCatChem, 2011,3(1):200-207. doi: 10.1002/cctc.201000324

    26. [26]

      SHAFAI G, HONG S Y, BERTINO M, RAHMAN T S. Effect of ligands on the geometric and electronic structure of Au-13 clusters[J]. J Phys Chem C, 2009,113(28):12072-12078. doi: 10.1021/jp811200e

    27. [27]

      CHENG P, ZHANG S L, WANG P, HUANG S P, TIAN H P. First-principles investigation of thiophene adsorption on Ni-13 and Zn@Ni-12 nanoclusters[J]. Comput Theor Chem, 2013,1020:136-142. doi: 10.1016/j.comptc.2013.07.044

    28. [28]

      SHI W, ZHANG L Y, XIA S J, NI Z M. Adsorption of thiophene on M (111)(M=Pd, Pt, Au) surfaces[J]. Acta Phys Chim Sin, 2014,30(12):2249-2255.

    29. [29]

      WANG H M, LGLESIA E. Thiophene hydrodesulfurization catalysis on supported Ru clusters:Mechanism and site requirements for hydrogenation and desulfurization pathways[J]. J Catal, 2010,273(2):245-256. doi: 10.1016/j.jcat.2010.05.019

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(2)
  • Abstract views(1643)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return