Citation: LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 992-999. shu

Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming

  • Corresponding author: ZHANG Lei, lnpuzhanglei@163.com LIU Dao-sheng, dsliu05@126.com
  • Received Date: 2 April 2018
    Revised Date: 25 June 2018

    Fund Project: the National Natural Science Foundation of China 21671092The project was supported by the National Natural Science Foundation of China (21671092, 21376237) and the Doctoral Scientific Research Foundation of Liaoning Province (2016013022)the Doctoral Scientific Research Foundation of Liaoning Province 2016013022the National Natural Science Foundation of China 21376237

Figures(8)

  • In this paper, CeO2 nanomaterials with oxygen vacancies and CuO/CeO2 catalysts for hydrogen production from methanol steam reforming were prepared by precipitation and impregnation methods.The influence of different calcination atmosphere on the structure and properties of CeO2 nanomaterials and the hydrogen production performance of methanol steam reforming was investigated.SEM, XRD, BET, H2-TPR, N2O titration and XPS were adopted to characterize the catalyst materials.The results showed that the catalytic activity of CuO/CeO2 catalyst was closely related to the surface area of copper, the strength of Cu-Ce interaction, the number of surface defects and surface oxygen vacancies.When the reaction temperature was 250℃, the molar ratio of water to methanol was 1.2 and the gas hourly space velocity was 800 h-1, the methanol conversion was 100% and the CO concentration in the offgas was 0.87%.
  • 加载中
    1. [1]

      AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRERA I, NAVARRO R M, FIERRO J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2, and Al2O3[J]. J Catal, 2003,219(2):389-403. doi: 10.1016/S0021-9517(03)00221-5

    2. [2]

      GU X K, LI W X. First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111)[J]. J Phys Chem C, 2010,114(49):43-43.  

    3. [3]

      TROVARELLI A. Catalytic properties of ceria and CeO-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464

    4. [4]

      VALDES-SOLI T, MARBAN G, FUERTES A B. Nanosized catalysts for the production of hydrogen by methanol steam reforming[J]. Catal Today, 2006,116(3):354-360. doi: 10.1016/j.cattod.2006.05.063

    5. [5]

      YANG S C, SU W N, LIN S D, RICK J, HWANG B J. Preparation of highly dispersed catalytic Cu from rod-like CuO-CeO2 mixed metal oxides:Suitable for applications in high performance methanol steam reforming[J]. Catal Sci Technol, 2012,2(4):807-812. doi: 10.1039/c2cy00330a

    6. [6]

      ZHOU J J, ZHANG Y, WU G S, MAO D S, LU G Z. Influence of the component interaction over Cu/ZrO2 catalysts induced with fractionated precipitation method on the catalytic performance for methanol steam reforming[J]. RSC Adv, 2016,6(36):30176-30183. doi: 10.1039/C5RA24163D

    7. [7]

      LAN H, ZHOU G L, LUO C J, YU Y R, XIE H M, ZHANG G Z. High efficiency CeCu composite oxide catalysts improved via preparation methods for propyl acetate catalytic combustion in air[J]. Int J Chem React Eng, 2016,14(3):757-768.  

    8. [8]

      LI C C, LIN R J, LIN H P, LIN Y K, LIN Y G, CHANG C C, CHEN L C, CHEN K H. Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol[J]. Chem Commun, 2011,47(5):1473-1475. doi: 10.1039/C0CC02918A

    9. [9]

      LANDI G, BARBATO P S, BENEDETTO A D, LISI L. Optimization of the preparation method of CuO/CeO2, structured catalytic monolith for CO preferential oxidation in H2-rich streams[J]. Appl Catal B:Environ, 2016,181(8):727-737.

    10. [10]

      LIU X, MEN Y, WANG J G, HE R, WANG Y Q. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. J Power Sources, 2017,364:341-350. doi: 10.1016/j.jpowsour.2017.08.043

    11. [11]

      JIRATOVA K, KOVANDA F, BALABANOVA J, KOLOUSEK D, KLEGOVA A, PACULTOVA K, OBALOVA L. Cobalt oxide catalysts supported on CeO2-TiO2, for ethanol oxidation and N2O decomposition[J]. React Kinet Mech Catal, 2017,121(1):121-139. doi: 10.1007/s11144-017-1142-x

    12. [12]

      ZAIBILSKIY M, DJINOVIC P, TCHERNYCHOVA E, TKACHENKO O P, KUSTOV L M, PINTAR A. Nanoshaped CuO/CeO2 materials:Effect of the exposed ceria surfaces on catalytic sctivity in N2O decomposition reaction[J]. ACS Catal, 2015,5(9):5357-5365. doi: 10.1021/acscatal.5b01044

    13. [13]

      ZHOU X H, LI L, LI Z H, FAN L L, KANG W M, CHENG B W. The preparation of continuous CeO2/CuO/Al2O3, ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity[J]. J Mater Sci:Mater Electron, 2017,28(1):1-11. doi: 10.1007/s10854-016-5486-1

    14. [14]

      SURESH R, POMMUSWAMY V, MARIAPPAN R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2, nanoparticles by chemical precipitation method[J]. Appl Surf Sci, 2013,273:457-464. doi: 10.1016/j.apsusc.2013.02.062

    15. [15]

      POLYCHRONOPOULOU K, ZEDAN A F, KATSIOTIS M S, BAKER M A, ALKHOORI A A, ALQARADAWI S Y, HINDER S J, ALHASSAN S. Rapid microwave assisted sol-gel synthesis of CeO2, and CexSm1-xO2, nanoparticle catalysts for CO oxidation[J]. J Mol Catal A:Chem, 2017,428:41-55.

    16. [16]

      MINAEI S, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3, nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming[J]. Adv Powder Technol, 2017,28(3):842-853. doi: 10.1016/j.apt.2016.12.010

    17. [17]

      ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015,43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012 

    18. [18]

      RAO G R, SAHU H R, MISHRA B G. Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method[J]. Colloids Surf A, 2003,220(1):261-269.  

    19. [19]

      YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Rare-earth improvement of Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188.  

    20. [20]

      SHANG H H, ZHANG X M, XU J, HAN Y F. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J]. Fron Chem Sci Eng, 2017,11(4):603-612. doi: 10.1007/s11705-017-1661-z

    21. [21]

      ZENG S H, LIU Y, WANG Y Q. CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide[J]. Catal Lett, 2007,117(3/4):119-125.

    22. [22]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3, as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):1-8.  

    23. [23]

      SHEN W W, MAO D S, LUO Z M, YU J. CO oxidation on mesoporous SBA-15 supported CuO-CeO2 catalyst prepared by a surfactant-assisted impregnation method[J]. RSC Adv, 2017,7(44):27689-27698. doi: 10.1039/C7RA02966G

    24. [24]

      AMADINE O, ESSAMLALI Y, FIHRI A, LARZAEK M, ZAHOUILY M. Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation[J]. RSC Adv, 2017,7(21):12586-12597. doi: 10.1039/C7RA00734E

    25. [25]

      ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, HU Y K, WANG A J, ZHAO S S. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2, for methanol steam reforming[J]. J Fuel Chem Technol, 2013,41(7):883-888. doi: 10.1016/S1872-5813(13)60038-9

    26. [26]

      DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2, derived from asurfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015,40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130

    27. [27]

      LUO Z M, MAO D S, SHEN W W, ZHENG Y L, YU J. Preparation and characterization of mesostructured cellular foam silica supported Cu-Ce mixed oxide catalysts for CO oxidation[J]. RSC Adv, 2017,7(16):9732-9743. doi: 10.1039/C6RA25912J

    28. [28]

      BARABATO P S, COLUSSI S, BENEDETTO A D, LANDI G, LISI L, LLORCA J, TROVARELLI A. On the origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction[J]. J Phys Chen C, 2016,120(24):13039-13048. doi: 10.1021/acs.jpcc.6b02433

    29. [29]

      DOSA M, PIUMETTI M, BENSAID S, ANDANA T, NOVARA C, GIORGIS F, FINO D, RUSSO N. Novel Mn-Cu-Containing CeO2, nanopolyhedra for the oxidation of CO and diesel soot:Effect of dopants on the nanostructure and catalytic activity[J]. Catal Lett, 2018,148(1):298-311. doi: 10.1007/s10562-017-2226-y

    30. [30]

      ZENG S H, ZHANG W L, GUO S L, SU H Q. Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide[J]. Catal Commun, 2012,23(21):62-66.  

    31. [31]

      JI Y J, JIN Z Y, LI J, ZHANG Y, LIU H Z, SHI L S, ZHONG Z Y, SU F B. Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres:Facile hydrothermal synthesis and applications[J]. Nano Res, 2017,10(2):381-396. doi: 10.1007/s12274-016-1298-0

    32. [32]

      ZHANG L, PAN L, NI C, SUN T, ZHAO S, WANG S, WANG A, HU Y. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    33. [33]

      ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chin J Catal, 2012,33(12):1958-1964.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(12)
  • Abstract views(2092)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return