Citation: MENG Yuan-yuan, WANG Ya-ke, LIANG Li-ping. Preparation and thermal stability of C-doped zirconia tetragonal particles by the methanol-thermal method[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1273-1280. shu

Preparation and thermal stability of C-doped zirconia tetragonal particles by the methanol-thermal method

  • Corresponding author: LIANG Li-ping, liangliping@tyust.edu.cn
  • Received Date: 25 June 2019
    Revised Date: 23 August 2019

    Fund Project: Talent Training Project of Shanxi Postgraduate Joint Training Base 2017JD33Talent Training Project of Shanxi Postgraduate Joint Training Base 2018JD34The project was supported by Talent Training Project of Shanxi Postgraduate Joint Training Base (2017JD33, 2018JD34)

Figures(5)

  • In the solvothermal process of ZrO(NO3)2·2H2O-CO(NH2)2-CH3OH system, methanol can act as both solvent and a reactant. Due to the lack of water, methanol is directly involved in the hydrolysis-condensation reaction of zirconium salt, through the nucleophilic substitution between its methoxy groups and Zr4+ as well as the coordination as a molecular state, to form inorganic polymers with[ZrOz(OH)p(OCH3)q·rCH3OH]n structure. At the same time, the low solubility of methanol to the polymers strongly inhibits the Ostwald ripening process, thus hindering the crystallization of solvothermal products and also reducing the probability of the thermodynamically supported structural rearrangement. Urea competes with zirconium salt for water in the system and the hydroxyl groups on the skeleton of zirconium species by its hydrolysis reaction, which not only leads to an increase in the amount of Zr-O-Zr bonds in polymers and then a further decrease in the probability of structural rearrangement of the solvothermal products, but also an increase in the content of methoxy group in solvothermal products. When calcined at 400℃, the solvothermal products containing a large amount of methoxy groups transformed into C-doped zirconia. Carbon doping, together with the solvent effect, stabilized the tetragonal phase of zirconia. The tetragonal phase in C-doped zirconia showed comparatively high thermal stability during calcination in air and at the medium temperature range of 500-600℃. Increasing the calcination temperature to 700℃, the free carbon species on the surface of particles was completely removed by oxidation, and the C dissolved in the lattice was also partially removed, resulting in some tetragonal phases lost stability and turned into monoclinic phases.
  • 加载中
    1. [1]

      JUNG K T, BELL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A-Chem, 2000,163:27-42. doi: 10.1016/S1381-1169(00)00397-6

    2. [2]

      CHARY K V R, RAMESH K, NARESH D, RAO P V R, RAO R A, RAO V V. The effect of zirconia polymorphs on the structure and catalytic properties of V2O5/ZrO2 catalysts[J]. Catal Today, 2009,141(1/2):187-194.  

    3. [3]

      RUPPERT A M, NIEWIADOMSKI M, GRAMS J, KWAPIŃSKI W. Optimization of Ni/ZrO2 catalytic performance in thermochemical cellulose conversion for enhanced hydrogen production[J]. Appl Catal B:Environ, 2014,145(1):85-90.  

    4. [4]

      MIRANDA M C D, RAMÍREZ S A E, JURADO S G, VERA C R. Superficial effects and catalytic activity of ZrO2-SO42- as a function of the crystal structure[J]. J Mol Catal A-Chem, 2015,398:325-335. doi: 10.1016/j.molcata.2014.12.015

    5. [5]

      LI W Z, ZHAO Z K, JIAO Y H, WANG G R. Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane[J]. Chin J Catal, 2016,37(12):2122-2133. doi: 10.1016/S1872-2067(16)62540-8

    6. [6]

      FAN Y Q, CHENG S J, WANG H, TIAN J, XIE S H, PEI Y, QIAO M H, ZONG B N. Pt-WOx on monoclinic or tetrahedral ZrO2:Crystal phase effect of zirconia on glycerol hydrogenolysis to 1, 3-propanediol[J]. Appl Catal B:Environ, 2017,217:331-341. doi: 10.1016/j.apcatb.2017.06.011

    7. [7]

      HERNÁNDEZ S, GIONCO C, HUSAK T, CASTELLINO M, MUÑOZ-TABARES J A, TOLOD K, GIAMELLO E, PAGANINI M C, RUSSO N. Insights into the sunlight-driven water oxidation by Ce and Er-doped ZrO2[J]. Front Chem Sci Eng, 2018,6368.

    8. [8]

      LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008,24:8358-8366. doi: 10.1021/la800370r

    9. [9]

      LI Wei-zhen, LIU Hai-chao. Solvent effects on the solvothermal synthesis of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Phy-Chim Sin, 2008,24(12):2172-2178. doi: 10.3866/PKU.WHXB20081205

    10. [10]

      LI Ya-wei, TIAN Cai-lan, ZHAO Lei, LI Yuan-bing, JIN Sheng-li, LI Shu-jing. Preparation and phase transformation of nano-sized zirconia powder surrounded by carbon[J]. J Chin Ceram Soc, 2009,37(8):1273-1276. doi: 10.3321/j.issn:0454-5648.2009.08.001

    11. [11]

      LIAO Ning, LI Ya-wei, SANG Shao-bo, JIN Sheng-li, LI Hua-jun. Stabilization of carbon to zirconia in ZrO2-C refractories[J]. Refractories, 2013,47(5):329-333. doi: 10.3969/j.issn.1001-1935.2013.05.002

    12. [12]

      ZHANG Guo-fang, ZHAI Ting-ting, HOU Zhong-hui, XU Jian-yi, WU Yue, GE Qi-lu. Research on the influence of spectrum characteristics on the catalysis effect of nanosized CeO2-xNx solid solutions[J]. Spectrosc Spect Anal, 2018,38(10):3192-3198.  

    13. [13]

      FOCA N, LISA G, RUSU I. Synthesis and characterization of some Cr(Ⅲ), Fe(Ⅲ) and Zr(Ⅳ) compounds with substituted o-hydroxy benzophenone[J]. J Therm Anal Calorim, 2004,78:239-249. doi: 10.1023/B:JTAN.0000042171.81071.e3

    14. [14]

      QIU Yu, GAO Lian. Synthesis of transition metal nitride powders from metal-urea nitratecomplex precursors[J]. J Inorg Mater, 2004,19(1):63-68. doi: 10.3321/j.issn:1000-324X.2004.01.011

    15. [15]

      PRIOR T J, KIFT R L. Synthesis and crystal structures of two metal urea nitrates[J]. J Chem Crystallogr, 2009,39(8):558-563. doi: 10.1007/s10870-009-9517-0

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(10)
  • Abstract views(1612)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return