Citation: ZHAO Yan-ling, DAI Rong, ZHENG Zi-liang, WANG Shi-yao, SUN Chen, LI Xing, XIE Xian-mei. Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1392-1400. shu

Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming

  • Corresponding author: XIE Xian-mei, xxmsxty@sina.com
  • Received Date: 17 May 2017
    Revised Date: 17 September 2017

    Fund Project: Innovation Project of Shanxi Graduate Education 2016BY051The project was supported by the National Natural Science Foundation of China (51541210) and Innovation Project of Shanxi Graduate Education (2016BY051)the National Natural Science Foundation of China 51541210

Figures(8)

  • A group of multi-functional xCuyNi-ABZ catalysts supported on all-silicon Beta zeolite were prepared by an incipient wetness impregnation method. The xCuyNi-ABZ catalysts were characterized by a variety of techniques to obtain the information of their structures, the effect of different amounts of Cu and Ni active sites and understanding the reaction pathway. Compared with the traditional SiO2 supported catalyst, the 2.5Cu2.5Ni-ABZ catalyst exhibited very good catalytic performance for the ethanol steam reforming, including 100% conversion of ethanol, high 67.23% H2 selectivity (67.23%) and low by-product selectivity (CO=4.14%, CH4=5.65%) at 450 ℃ due to the synergistic effects of Ni and Cu. The Cu sites preferentially facilitate the dehydrogenation of ethanol at the initial reaction step, and the Ni metal catalyzes subsequently dissociation of the C-C bond. With increase of reaction temperature, H2 and CO2 selectivity are progressively increased together with the significant decline of CO and CH4 selectivity, which indicates that the dominant reaction is steam acetaldehyde reforming. This phenomenon suggests that there is a temperature-related competition between acetaldehyde decomposition and acetaldehyde steam reforming reaction. Moreover, the presence of Cu promoted the water-gas-shift reaction. The 2.5Cu2.5Ni-ABZ catalyst possesses good anti-sintering ability and anti-carbon deposition properties.
  • 加载中
    1. [1]

      FANG W, PAUL S, CAPRON M, BIRADAR A V, UMBARKAR S B, DONGARE M. K., DUMEIGNIL F., JALOWIECKI-DUHAMEL L. Highly loaded well dispersed stable Ni species in NixMg2AlOy nanocomposites:Application to hydrogen production from bioethanol[J]. Appl Catal B:Environ, 2015,166:485-496.  

    2. [2]

      CROWLEY S, CASTALDI M J. Mechanistic insights into catalytic ethanol steam reforming using lsotope-labeled reactants[J]. Angew Chem Int Edit, 2016,55(36):10650-10655. doi: 10.1002/anie.201604388

    3. [3]

      XU W, LIU Z, JOHNSTON-PECK A C, SENANAYAKE S D, ZHOU G, STACCHIOLA D, STACH E A, RODRIGUEZ J A. Steam reforming of ethanol on Ni/CeO2:Reaction pathway and interaction between Ni and the CeO2 support[J]. ACS Catal, 2013,3(5):975-984. doi: 10.1021/cs4000969

    4. [4]

      ROSSETTI I, LASSO J, NICHELE V, SIGNORETTOB M, FINOCCHIOC E, RAMISC G, MICHELED A D. Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming[J]. Appl Catal B:Environ, 2014,150:257-267.  

    5. [5]

      CORONRLA L, MÚNERAA J F, TARDITIA A M, MORENOB M S, CORNAGLIA L M. Hydrogen production by ethanol steam reforming over Rh nanoparticles supported on lanthana/silica systems[J]. Appl Catal B:Environ, 2014,160:254-266.  

    6. [6]

      RAMOSA A C, MONTINIB T, LORENZUTB B, TROIANIA H, GENNARIA F C, GRAZIANIB M, FORNASIERO P. Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M=Ru, Pd, Ag) nanocomposites[J]. Catal Today, 2012,180(1):96-104. doi: 10.1016/j.cattod.2011.03.068

    7. [7]

      CHEN Y, SHAO Z, XU N. Ethanol steam reforming over Pt catalysts supported on CexZr1-xO2 prepared via a glycine nitrate process[J]. Energy Fuels, 2008,22(3):1873-1879. doi: 10.1021/ef700576f

    8. [8]

      SUN J, QIU X, WU F. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application[J]. Int J Hydrogen Energy, 2005,30(4):437-445. doi: 10.1016/j.ijhydene.2004.11.005

    9. [9]

      LIU Z, SENANAYAKE S D, RODRIGUEZ J A. Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts:A perspective of recent studies over model and powder systems[J]. Appl Catal B:Environ, 2016,197:184-197. doi: 10.1016/j.apcatb.2016.03.013

    10. [10]

      HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:a review[J]. Energy Fuels, 2005,19(5):2098-2106. doi: 10.1021/ef0500538

    11. [11]

      MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, NORONHA F B. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today, 2015,242:35-49. doi: 10.1016/j.cattod.2014.05.045

    12. [12]

      NICHELE V, SIGNORETTO M, PINNA F, COMPAGNONI E G M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015,145(2):549-558. doi: 10.1007/s10562-014-1414-2

    13. [13]

      CONTRERAS J, SALMONES J, COLÍN-LUNA J, NUÑO L, QUINTANA B, CÓRDOVA I, ZEIFERTB B, TAPIA C, FUENTES G A. Catalysts for H2 production using the ethanol steam reforming (a review)[J]. Int J Hydrogen Energy, 2014,39(33):18835-18853. doi: 10.1016/j.ijhydene.2014.08.072

    14. [14]

      CAMPOS-SKROBOT F C, RIZZO-DOMINGUES R C P, FERNANDES-MACHADO N R C, CANTÃO M P. Novel zeolite-supported rhodium catalysts for ethanol steam reforming[J]. J Power Sources, 2008,183(2):713-716. doi: 10.1016/j.jpowsour.2008.05.066

    15. [15]

      LANG L, ZHAO S, YIN X. Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol[J]. Int J Hydrogen Energy, 2015,40(32):9924-9934. doi: 10.1016/j.ijhydene.2015.06.016

    16. [16]

      DA COSTA-SERRA J F, NAVARRO M T, REY F, CHICA A. Bioethanol steam reforming on Ni-based modified mordenite[J]. Int J Hydrogen Energy, 2012,37(8):7101-7108. doi: 10.1016/j.ijhydene.2011.10.086

    17. [17]

      INOKAWA H, NISHIMOTO S, KAMESHIMA Y, MIYAKE M. Promotion of H2 production from ethanol steam reforming by zeolite basicity[J]. Int J Hydrogen Energy, 2011,36(23):15195-15202. doi: 10.1016/j.ijhydene.2011.08.099

    18. [18]

      KIM T W, KIM S Y, KIM J C, KIMB Y, RYOOB R, KIMA C-U. Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts[J]. Appl Catal B:Environ, 2016,185:100-109. doi: 10.1016/j.apcatb.2015.11.046

    19. [19]

      SERRANO D, GRIEKEN R V, SANCHEZ P, SANZ R, RODRIÓGUEZ L. Crystallization mechanism of all-silica zeolite beta in fluoride medium[J]. Microporous Mesoporous Mater, 2001,46(1):35-46. doi: 10.1016/S1387-1811(01)00272-4

    20. [20]

      SAW E T, OEMAR U, TAN X R, DUB Y, BORGNAB A, HIDAJATA K, KAWI S. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction:Methane suppression via enhanced CO adsorption[J]. J Catal, 2014,314:32-46. doi: 10.1016/j.jcat.2014.03.015

    21. [21]

      VIZCAÍNO A J, CARRERO A, CALLES J A. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts[J]. Int J Hydrogen Energy, 2007,32(10):1450-1461.  

    22. [22]

      ZHENG Z, YANG D, LI T, YIN X M, WANG S Y, WU X, AN X, XIE X M. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catal Sci Technol, 2016,6(14):5427-5439. doi: 10.1039/C6CY00119J

    23. [23]

      BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Appl Catal B:Environ, 2002,39(1):65-74. doi: 10.1016/S0926-3373(02)00075-9

    24. [24]

      GARBARINO G, WANG C, VALSAMAKIS I, CHITSAZAN S, RIANIC P, FINOCCHIO E, FLYTZANI-STEPHANOPOULOS M, BUSC G. A study of Ni/Al2O3 and Ni-La/Al2O3 catalysts for the steam reforming of ethanol and phenol[J]. Appl Catal B:Environ, 2015,174:21-34.  

    25. [25]

      KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, CHITSAZANA S, RIANIC P, FINOCCHIOA E, FLYTZANI-STEPHANOPOULOSB M, BUSCA G. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. J Catal, 2009,264(2):117-129. doi: 10.1016/j.jcat.2009.03.002

    26. [26]

      CALLES J A, CARRERO A, VIZCAÍNO A J. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming[J]. Catal, 2015,5(1):58-76. doi: 10.3390/catal5010058

    27. [27]

      JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S, JUNG U H, YOON W L. Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts:An optimization of Cu loading[J]. Int J Hydrogen Energy, 2014,39(17):9135-9142. doi: 10.1016/j.ijhydene.2014.04.005

    28. [28]

      KUBACKA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalyst[J]. Appl Catal A:Gen, 2016,518:2-17. doi: 10.1016/j.apcata.2016.01.027

    29. [29]

      ZENG G, LI Y, OLSBYE U. Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts:The initial steps[J]. Catal. Today, 2016,259:312-322. doi: 10.1016/j.cattod.2015.07.006

    30. [30]

      MATTOS L V, JACOBS G, DAVIS B H, NORONHA F B. Production of hydrogen from ethanol:Review of reaction mechanism and catalyst deactivation[J]. Chem Rev, 2012,112(7):4094-4123. doi: 10.1021/cr2000114

    31. [31]

      ZHAO X, LU G. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. Int J Hydrogen Energy, 2016,41(5):3349-3362. doi: 10.1016/j.ijhydene.2015.09.063

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    6. [6]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    7. [7]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    19. [19]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(1)
  • Abstract views(1215)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return