Citation: ZHAO Yan-ling, DAI Rong, ZHENG Zi-liang, WANG Shi-yao, SUN Chen, LI Xing, XIE Xian-mei. Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1392-1400. shu

Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming

  • Corresponding author: XIE Xian-mei, xxmsxty@sina.com
  • Received Date: 17 May 2017
    Revised Date: 17 September 2017

    Fund Project: Innovation Project of Shanxi Graduate Education 2016BY051The project was supported by the National Natural Science Foundation of China (51541210) and Innovation Project of Shanxi Graduate Education (2016BY051)the National Natural Science Foundation of China 51541210

Figures(8)

  • A group of multi-functional xCuyNi-ABZ catalysts supported on all-silicon Beta zeolite were prepared by an incipient wetness impregnation method. The xCuyNi-ABZ catalysts were characterized by a variety of techniques to obtain the information of their structures, the effect of different amounts of Cu and Ni active sites and understanding the reaction pathway. Compared with the traditional SiO2 supported catalyst, the 2.5Cu2.5Ni-ABZ catalyst exhibited very good catalytic performance for the ethanol steam reforming, including 100% conversion of ethanol, high 67.23% H2 selectivity (67.23%) and low by-product selectivity (CO=4.14%, CH4=5.65%) at 450 ℃ due to the synergistic effects of Ni and Cu. The Cu sites preferentially facilitate the dehydrogenation of ethanol at the initial reaction step, and the Ni metal catalyzes subsequently dissociation of the C-C bond. With increase of reaction temperature, H2 and CO2 selectivity are progressively increased together with the significant decline of CO and CH4 selectivity, which indicates that the dominant reaction is steam acetaldehyde reforming. This phenomenon suggests that there is a temperature-related competition between acetaldehyde decomposition and acetaldehyde steam reforming reaction. Moreover, the presence of Cu promoted the water-gas-shift reaction. The 2.5Cu2.5Ni-ABZ catalyst possesses good anti-sintering ability and anti-carbon deposition properties.
  • 加载中
    1. [1]

      FANG W, PAUL S, CAPRON M, BIRADAR A V, UMBARKAR S B, DONGARE M. K., DUMEIGNIL F., JALOWIECKI-DUHAMEL L. Highly loaded well dispersed stable Ni species in NixMg2AlOy nanocomposites:Application to hydrogen production from bioethanol[J]. Appl Catal B:Environ, 2015,166:485-496.  

    2. [2]

      CROWLEY S, CASTALDI M J. Mechanistic insights into catalytic ethanol steam reforming using lsotope-labeled reactants[J]. Angew Chem Int Edit, 2016,55(36):10650-10655. doi: 10.1002/anie.201604388

    3. [3]

      XU W, LIU Z, JOHNSTON-PECK A C, SENANAYAKE S D, ZHOU G, STACCHIOLA D, STACH E A, RODRIGUEZ J A. Steam reforming of ethanol on Ni/CeO2:Reaction pathway and interaction between Ni and the CeO2 support[J]. ACS Catal, 2013,3(5):975-984. doi: 10.1021/cs4000969

    4. [4]

      ROSSETTI I, LASSO J, NICHELE V, SIGNORETTOB M, FINOCCHIOC E, RAMISC G, MICHELED A D. Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming[J]. Appl Catal B:Environ, 2014,150:257-267.  

    5. [5]

      CORONRLA L, MÚNERAA J F, TARDITIA A M, MORENOB M S, CORNAGLIA L M. Hydrogen production by ethanol steam reforming over Rh nanoparticles supported on lanthana/silica systems[J]. Appl Catal B:Environ, 2014,160:254-266.  

    6. [6]

      RAMOSA A C, MONTINIB T, LORENZUTB B, TROIANIA H, GENNARIA F C, GRAZIANIB M, FORNASIERO P. Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M=Ru, Pd, Ag) nanocomposites[J]. Catal Today, 2012,180(1):96-104. doi: 10.1016/j.cattod.2011.03.068

    7. [7]

      CHEN Y, SHAO Z, XU N. Ethanol steam reforming over Pt catalysts supported on CexZr1-xO2 prepared via a glycine nitrate process[J]. Energy Fuels, 2008,22(3):1873-1879. doi: 10.1021/ef700576f

    8. [8]

      SUN J, QIU X, WU F. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application[J]. Int J Hydrogen Energy, 2005,30(4):437-445. doi: 10.1016/j.ijhydene.2004.11.005

    9. [9]

      LIU Z, SENANAYAKE S D, RODRIGUEZ J A. Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts:A perspective of recent studies over model and powder systems[J]. Appl Catal B:Environ, 2016,197:184-197. doi: 10.1016/j.apcatb.2016.03.013

    10. [10]

      HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:a review[J]. Energy Fuels, 2005,19(5):2098-2106. doi: 10.1021/ef0500538

    11. [11]

      MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, NORONHA F B. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today, 2015,242:35-49. doi: 10.1016/j.cattod.2014.05.045

    12. [12]

      NICHELE V, SIGNORETTO M, PINNA F, COMPAGNONI E G M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015,145(2):549-558. doi: 10.1007/s10562-014-1414-2

    13. [13]

      CONTRERAS J, SALMONES J, COLÍN-LUNA J, NUÑO L, QUINTANA B, CÓRDOVA I, ZEIFERTB B, TAPIA C, FUENTES G A. Catalysts for H2 production using the ethanol steam reforming (a review)[J]. Int J Hydrogen Energy, 2014,39(33):18835-18853. doi: 10.1016/j.ijhydene.2014.08.072

    14. [14]

      CAMPOS-SKROBOT F C, RIZZO-DOMINGUES R C P, FERNANDES-MACHADO N R C, CANTÃO M P. Novel zeolite-supported rhodium catalysts for ethanol steam reforming[J]. J Power Sources, 2008,183(2):713-716. doi: 10.1016/j.jpowsour.2008.05.066

    15. [15]

      LANG L, ZHAO S, YIN X. Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol[J]. Int J Hydrogen Energy, 2015,40(32):9924-9934. doi: 10.1016/j.ijhydene.2015.06.016

    16. [16]

      DA COSTA-SERRA J F, NAVARRO M T, REY F, CHICA A. Bioethanol steam reforming on Ni-based modified mordenite[J]. Int J Hydrogen Energy, 2012,37(8):7101-7108. doi: 10.1016/j.ijhydene.2011.10.086

    17. [17]

      INOKAWA H, NISHIMOTO S, KAMESHIMA Y, MIYAKE M. Promotion of H2 production from ethanol steam reforming by zeolite basicity[J]. Int J Hydrogen Energy, 2011,36(23):15195-15202. doi: 10.1016/j.ijhydene.2011.08.099

    18. [18]

      KIM T W, KIM S Y, KIM J C, KIMB Y, RYOOB R, KIMA C-U. Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts[J]. Appl Catal B:Environ, 2016,185:100-109. doi: 10.1016/j.apcatb.2015.11.046

    19. [19]

      SERRANO D, GRIEKEN R V, SANCHEZ P, SANZ R, RODRIÓGUEZ L. Crystallization mechanism of all-silica zeolite beta in fluoride medium[J]. Microporous Mesoporous Mater, 2001,46(1):35-46. doi: 10.1016/S1387-1811(01)00272-4

    20. [20]

      SAW E T, OEMAR U, TAN X R, DUB Y, BORGNAB A, HIDAJATA K, KAWI S. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction:Methane suppression via enhanced CO adsorption[J]. J Catal, 2014,314:32-46. doi: 10.1016/j.jcat.2014.03.015

    21. [21]

      VIZCAÍNO A J, CARRERO A, CALLES J A. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts[J]. Int J Hydrogen Energy, 2007,32(10):1450-1461.  

    22. [22]

      ZHENG Z, YANG D, LI T, YIN X M, WANG S Y, WU X, AN X, XIE X M. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catal Sci Technol, 2016,6(14):5427-5439. doi: 10.1039/C6CY00119J

    23. [23]

      BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Appl Catal B:Environ, 2002,39(1):65-74. doi: 10.1016/S0926-3373(02)00075-9

    24. [24]

      GARBARINO G, WANG C, VALSAMAKIS I, CHITSAZAN S, RIANIC P, FINOCCHIO E, FLYTZANI-STEPHANOPOULOS M, BUSC G. A study of Ni/Al2O3 and Ni-La/Al2O3 catalysts for the steam reforming of ethanol and phenol[J]. Appl Catal B:Environ, 2015,174:21-34.  

    25. [25]

      KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, CHITSAZANA S, RIANIC P, FINOCCHIOA E, FLYTZANI-STEPHANOPOULOSB M, BUSCA G. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. J Catal, 2009,264(2):117-129. doi: 10.1016/j.jcat.2009.03.002

    26. [26]

      CALLES J A, CARRERO A, VIZCAÍNO A J. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming[J]. Catal, 2015,5(1):58-76. doi: 10.3390/catal5010058

    27. [27]

      JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S, JUNG U H, YOON W L. Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts:An optimization of Cu loading[J]. Int J Hydrogen Energy, 2014,39(17):9135-9142. doi: 10.1016/j.ijhydene.2014.04.005

    28. [28]

      KUBACKA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalyst[J]. Appl Catal A:Gen, 2016,518:2-17. doi: 10.1016/j.apcata.2016.01.027

    29. [29]

      ZENG G, LI Y, OLSBYE U. Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts:The initial steps[J]. Catal. Today, 2016,259:312-322. doi: 10.1016/j.cattod.2015.07.006

    30. [30]

      MATTOS L V, JACOBS G, DAVIS B H, NORONHA F B. Production of hydrogen from ethanol:Review of reaction mechanism and catalyst deactivation[J]. Chem Rev, 2012,112(7):4094-4123. doi: 10.1021/cr2000114

    31. [31]

      ZHAO X, LU G. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. Int J Hydrogen Energy, 2016,41(5):3349-3362. doi: 10.1016/j.ijhydene.2015.09.063

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    9. [9]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    10. [10]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    11. [11]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    14. [14]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    15. [15]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(1)
  • Abstract views(1258)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return