Citation: SHEN Tian, WANG Yong-gang, LIN Xiong-chao, ZHANG Hai-yong, XU De-ping. Activation and mechanism of O2 on chars from lignite steam gasification[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1288-1297. shu

Activation and mechanism of O2 on chars from lignite steam gasification

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 25 June 2018
    Revised Date: 25 August 2018

    Fund Project: The project was supported by the National Key Technology Research (2012BAA04B02)the National Key Technology Research 2012BAA04B02

Figures(12)

  • The char samples were prepared from pyrolysis/gasification of Shengli lignite in N2/O2/H2O/H2O+O2 atmosphere using a one-stage novel fluidized-bed/fixed-bed quartz reactor, and characterized by BET, Raman, FT-IR, microwave digestion ICP-AES, and TGA techniques. Effects of oxygen addition on gasification reaction and the char structure and reactivity were studied to investigate the activation and mechanism of O2 on the char. The results indicate that oxygen addition could change the char structure and improve the char reactivity, thus promoting gasification conversion and yield of H2 and CO2. The activation of O2 on the char mainly includes two aspects. First, with the decomposition of aromatic nucleus by oxygen, the large π bond of aromatic rings is destroyed, and the new functional groups are generated, which could promote the reaction (C+H2O→H2+CO). Second, with the gasification going on, the large (≥ 6 rings) aromatic structure is depolymerized into small (3-5 rings) one, and oxygen atoms enter the aromatic nucleus, forming the defect position C-O-C. As a result, the defect degree of char microcrystalline structure increases, the polymerization degree of char microcrystalline structure decreases, and the reactivity and surface adsorption of char is improved, which could promote the reaction (CO+H2O→H2+CO2).
  • 加载中
    1. [1]

      WANG Yong-gang, SUN Jia-liang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J China Coal Soc, 2014,39(8):1765-1771.  

    2. [2]

      SHEN Tian, WANG Yong-gang, CHENG Xiang-long, LIN Xiong-chao. Activation and mechanism of chars from gasification of lignite at different steam concentration[J]. J Fuel Chem Technol, 2017,45(5):513-522. doi: 10.3969/j.issn.0253-2409.2017.05.001 

    3. [3]

      LI T T, ZHANG L, DONG L, LI C-Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014,117(part B):1190-1195.  

    4. [4]

      TAY H-L, KAJITANI S, ZHANG S, LI C-Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013,103:22-28. doi: 10.1016/j.fuel.2011.02.044

    5. [5]

      TAY H-L, KAJITANI S, ZHANG S, LI C-Z. Inhibiting and other effects of hydrogen during gasification:Further insights from FT-Raman spectroscopy[J]. Fuel, 2014,116:1-6. doi: 10.1016/j.fuel.2013.07.066

    6. [6]

      SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001 

    7. [7]

      QIN Zhong-yu, WANG Yong-gang, DAI Jin-ze, ZHANG Xue-ying, LIN Xiong-chao. Lignite gasification and semi-coke reactivity under low-oxygen volume fraction using a 10kg/h downdraft gasifier[J]. Coal Convers, 2017,40(4):23-29. doi: 10.3969/j.issn.1004-4248.2017.04.005

    8. [8]

      CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ:Macroscopic reaction characteristic[J]. J Fuel Chem Technol, 2017,45(1):15-20. doi: 10.3969/j.issn.0253-2409.2017.01.003 

    9. [9]

      CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅱ:Mechanism study[J]. J Fuel Chem Technol, 2017,45(2):138-146. doi: 10.3969/j.issn.0253-2409.2017.02.002 

    10. [10]

      LI X, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006,85(10/11):1509-1517.  

    11. [11]

      LI X, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10/11):1518-1525.

    12. [12]

      ZHANG L X, HUANG J J, FANG Y T, WANG Y. Gasification reactivity and kinetics of typical chinese anthracite chars with steam and CO2[J]. Energy Fuels, 2006,20(3):1201-1210. doi: 10.1021/ef050343o

    13. [13]

      YE D P, AGNEW J B, ZHANG D K. Gasification of a south australian low-rank coal with carbon dioxide and steam:Kinetics and reactivity studies[J]. Fuel, 1998,77(11):1209-1219. doi: 10.1016/S0016-2361(98)00014-3

    14. [14]

      ZHANG S, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅸ. Effects of volatile-char interactions on char-H2O and char-O2 reactivities[J]. Fuel, 2011,90(4):1655-1661. doi: 10.1016/j.fuel.2010.11.008

    15. [15]

      TAY H L, KAJITANI S, ZHANG S, LI C Z. Inhibiting and other effects of hydrogen during gasification:Further insights from FT-Raman spectroscopy[J]. Fuel, 2014,116:1-6. doi: 10.1016/j.fuel.2013.07.066

    16. [16]

      WENG Shi-fu. Fourier Transform Infrared Spectroscopy[M]. Beijing:Chemical Industry Press, 2010.

    17. [17]

      LI C-Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007,86(12/13):1664-1683.  

    18. [18]

      MIN Z, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011,90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(14)
  • Abstract views(1008)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return