Citation: YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1163-1172. shu

Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study

  • Corresponding author: YAN Guang-jing, 1532828742@qq.com
  • Received Date: 21 May 2019
    Revised Date: 17 July 2019

    Fund Project: The project was supported by the National Natural Science Foudation of China (51976059)the National Natural Science Foudation of China 51976059

Figures(9)

  • The influence of H2O on the adsorption of SO2 on CaO (001) surface was investigated by density functional theory (DFT). The results indicate that H2O can have an effect on the adsorption geometries for SO2 on the CaO (001) surface. When SO2 is adsorbed to the CaO surface near a water group of different forms (viz., -H2O, -H, -OH and -H & -OH), the H group makes the adsorption energy 90 kJ/mol higher with the sulfur p-orbital shifting downward, whereas other groups have little effect on the adsorption energy. When SO2 is adsorbs to the -OH surface and -H & -OH surface, bisulfite-like structures are formed, with lower adsorption energies and tending to form more stable structures as intermediates. When SO2 adsorbs to the -H2O surface, bisulfite-like structure is formed and the H2O group decomposes to Ca(OH)2 like-structure on the CaO surface; the new H groups mainly bond the bisulfite and make adsorption energy 45 kJ/mol higher.
  • 加载中
    1. [1]

      ZOU Yao-min, YANG Yi-wen. Advances in the fluorescence detection technology of atmospheric pollutant sulfur dioxide[J]. Shanghai Chem Ind, 2019,44(4):39-43. doi: 10.3969/j.issn.1004-017X.2019.04.014

    2. [2]

      National Development and Reform Commission. Coal-fired energy-saving emission reduction upgrade plan(2014-2020)[EB /OL]. http://www.ndrc.gov.cn/gzdt/201409/t20140919_626240.html.

    3. [3]

      JIANG Min-hua, XIAO Ping. Large-Scale Circulating Fluidized Bed Boiler Technology[M]. Beijing: China Electric Power Press, 2009.

    4. [4]

      WANG C, ZHANG Y, JIA L, TAN Y. Effect of water vapor on the pore structure and sulfation of CaO[J]. Fuel, 2014,130:60-65. doi: 10.1016/j.fuel.2014.04.007

    5. [5]

      JIANG Zhong-xiao, DUAN Lun-bo, CHEN Xiao-ping, ZHAO Chang-sui. Effect of water vapor on indirect sulfation during air and O2/CO2 combustion[J]. Proc CSEE, 2013,33(26):14-20.  

    6. [6]

      STEWART M C, MANOVIC V, ANTHONY E J, MACCHI A. Enhancement of indirect sulphation of limestone by steam addition[J]. Environ Sci Technol, 2010,44(22):8781-8786. doi: 10.1021/es1021153

    7. [7]

      HSIA C, PIERRE G R ST, RAGHUNATHAN K, FAN L S. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J]. AIChE J, 1993,39(4):698-700. doi: 10.1002/aic.690390419

    8. [8]

      HSIA C, PIERRE G R S, FAN L. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE J, 1995,41(10):2337-2340. doi: 10.1002/aic.690411020

    9. [9]

      WANG C, JIA L, TAN Y, ANTHONY E J. The effect of water on the sulphation of limestone[J]. Fuel, 2010,89(9):2628-2632. doi: 10.1016/j.fuel.2010.04.022

    10. [10]

      WANG Shi-chang, XU Xu-chang, YAO Qiang. Experimental study on the catalysis effect of steam in the dry flue gas desulfurization reaction by CaO particles[J]. Proc CSEE, 2004,24(9):256-260.  

    11. [11]

      QI Hai-ying, YOU Zhang-fu, WANG Ai-jun, XU Xu-chang. Mechanism of improving the midiem temperature FGD process by reactivating sobernts by steam[J]. Proc CSEE, 2002,22(7):119-124. doi: 10.3321/j.issn:0258-8013.2002.07.025

    12. [12]

      ZHANG B, LIU J, SHEN F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density Functional theory study[J]. J Phys Chem C, 2015,119(27):15047-15055. doi: 10.1021/acs.jpcc.5b00645

    13. [13]

      CHENG L, LI W, CHEN Z, AI J, ZHOU Z, LIU J. DFT study of oxygen adsorption on Mo2C(001) and (201) surfaces at different conditions[J]. Appl Surf Sci, 2017,411:394-399. doi: 10.1016/j.apsusc.2017.03.195

    14. [14]

      LENTZ C, JAND S P, MELKE J, ROTH C, KAGHAZCHI P. DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations[J]. J Mol Catal A: Chem, 2017,426:1-9. doi: 10.1016/j.molcata.2016.10.002

    15. [15]

      DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018,46(11):1401-1408. doi: 10.3969/j.issn.0253-2409.2018.11.015 

    16. [16]

      LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface: A density functional theory study[J]. J Fuel Chem Technol, 2015,43(12):1414-1419. doi: 10.3969/j.issn.0253-2409.2015.12.002 

    17. [17]

      GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO(100)[J]. Fuel, 2017,197:541-550. doi: 10.1016/j.fuel.2017.02.057

    18. [18]

      SASMAZ E, WILCOX J. Mercury species and SO2 adsorption on CaO(100)[J]. J Phys Chem C, 2008,112(42):16484-16490. doi: 10.1021/jp801250h

    19. [19]

      WANG G, WANG W, FAN L, LI Y. CO2 and SO2 sorption on the alkali metals doped CaO(100)surface: A DFT-D study[J]. Appl Surf Sci, 2017,425:972-977. doi: 10.1016/j.apsusc.2017.07.158

    20. [20]

      CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Z Krist-Cryst mater, 2005,220(5/6).  

    21. [21]

      SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys: Condens matter, 2002,14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301

    22. [22]

      PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1993,484978.  

    23. [23]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    24. [24]

      ZINTL E, HARDER A, DAUTH B, ELEKTROCHEM Z. Angew. Zeitschrift für anorganische und allgemeine Chemie[J]. Phys Chem, 1934,40588.

    25. [25]

      CUNNINGHAM T L P COOPER D, GERRATT J, KARADAKOV P B, RAIMONDI M. Chemical bonding in oxofluorides of hypercoordinate sulfur[J]. J Chem Soc Faraday Trans, 1997,93:2247-2254. doi: 10.1039/a700708f

    26. [26]

      FAN Y, ZHUO Y, LI L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471. doi: 10.1016/j.apsusc.2017.04.233

    27. [27]

      FAN Y, ZHUO Y, ZHU Z, LI L, CHEN Q, LOU Y. Density functional theory study on Hg removal mechanisms of Cu-impregnated activated carbon prepared by simplified method[J]. Korean J Chem Eng, 2016,33(10):2869-2877. doi: 10.1007/s11814-016-0153-z

    28. [28]

      DE LEEUW N H, WATSON G W, PARKER S C. Atomistic simulation of the effect of dissociative adsorption of water on the surface structure and stability of calcium and magnesium oxide[J]. J Phys Chem C, 1995,99(47):17219-17225. doi: 10.1021/j100047a028

    29. [29]

      DE LEEUW N H, PURTON J A, PARKER S C, WATSON G W, KRESSE G. Density functional theory calculations of adsorption of water at calcium oxide and calcium fluoride surfaces[J]. Surf Sci, 2000,452(1/3):9-19.  

    30. [30]

      CARRASCO J, ILLAS F, LOPEZ N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces[J]. Phys Rev Lett, 2008,100(1)16101. doi: 10.1103/PhysRevLett.100.016101

    31. [31]

      FAN Y, YAO J G, ZHANG Z, SCEATS M, ZHUO Y, LI L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018,169:24-41. doi: 10.1016/j.fuproc.2017.09.006

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(7)
  • Abstract views(1285)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return