Citation: ZHANG Kong-yuan, CHEN Yan-fei, FAN Si-qiang, CUI Cheng-xin, XIAO Chang-lin, LIU Chen-guang. Study on ex-situ presulfurization technologies with different presulfiding agents for CoMo-based sulfur-tolerant shift catalysts[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 346-354. shu

Study on ex-situ presulfurization technologies with different presulfiding agents for CoMo-based sulfur-tolerant shift catalysts

  • Corresponding author: ZHANG Kong-yuan, zkyuana@126.com
  • Received Date: 25 September 2017
    Revised Date: 8 January 2018

Figures(6)

  • (NH4)2S and Na2S were selected from several presulfiding agents. Industrial Co-Mo based sulfur-tolerant shift catalysts were ex-situ presulfided with different presulfurization technologies. The crystal structures, surface characteristics and micro appearance were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (HRTEM). (NH4)2S and Na2S as presulfiding agents did not show obvious effects on the crystal structures of the catalysts. Partial O-S exchange of the active components was observed when (NH4)2S was used for presulfirization. And when presulfided with Na2S, the active components still remained oxidation state. As the ex-situ presulfurization temperature increased, the extent of vulcanization was:S-Na2S > S-(NH4)2S > the general in situ pre-vulcanization. When presulfided with (NH4)2S or the general in situ pre-vulcanization, the stacking number of MoS2 layers was mainly two to three. And when presulfided with Na2S, the stacking number of MoS2 layers increased obviously, mostly three to five. The activity sequence of the catalysts was S-Na2S > S-(NH4)2S > the general in situ pre-vulcanization when the catalysts were tested in a micro-fixed reactor at temperatures of 285, 350 and 450℃ respectively.
  • 加载中
    1. [1]

      RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Cat Rev, 2009,51(3):325-440. doi: 10.1080/01614940903048661

    2. [2]

      GE H, LI X K, Wang J G, LU Z J, QIN Z F, ZHOU L G. Study on hydrodesulfurization of thiophene over Mo/Al2O3 catalyst presulfided by thiosulfate ammonium[J]. J Fuel Chem Technol, 2009,37(2):199-204. doi: 10.1016/S1872-5813(09)60016-5

    3. [3]

      LIU B, CHAI Y M, WANG Y J, ZHANG T T, LIU Y Q, LIU C G. A simple technique for preparation of presulfided eggshell MoS2/Al2O3 catalysts and kinetics approach for highly selective hydrodesulfurization of FCC gasoline[J]. Appl Catal, A, 2010,388(1/2):248-255.  

    4. [4]

      CHOUZIER S, VRINAT M, CSREI T, ROY-AUBERGER M, AFANASIEV P. HDS and HDN activity of (Ni, Co)Mo binary and ternary nitrides prepared by decomposition of hexamethylenetetramine complexes[J]. Appl Catal, A, 2011,400(1/2):82-90.  

    5. [5]

      LI Y P, LIU D P, LIU C G. Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performance of an ex situ presulfided MoNiP/Al2O3 catalyst:Model compounds study and pilot test for fluidized catalytic cracking (FCC) diesel oil[J]. Energy Fuels, 2010,24(2):820-829.  

    6. [6]

      XU Shi-ye. Research and development on presulfurizing agent for catalytic hydrogenation[D]. Xi`an: Xi`an Shiyou University, 2015.

    7. [7]

      GUILLAUME D, LOPEZ S, CSERI T. Process for sulfurization of catalysts for hydrotreatment: US, US7513990[P]. 2009.

    8. [8]

      GAO Y L, FANG X C, CHENG Z M. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China[J]. Front Chem Sci Eng, 2011,5(3):287-296. doi: 10.1007/s11705-010-0529-2

    9. [9]

      GAO Y L, FANG X C, CHENG Z M. A comparative study on the ex situ and in situ presulfurization of hydrotreating catalysts[J]. Catal Today, 2010,158(3):496-503.  

    10. [10]

      LIAN Y X, WANG H F, FANG W P, YANG Y Q. Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide[J]. Energy Chem, 2010,19(1):61-66.  

    11. [11]

      SEAMANS J D, WELCH J G, GASSER N G. Method of presulfiding a hydrotreating catalyst: US, US4943547[P]. 1990.

    12. [12]

      RATNASAMY P, RODRIQUE L, LEONARD A J. Structural and textural studies in molybdenum sulfide systems[J]. J Phys Chem, 1973,77(18):2242-2245. doi: 10.1021/j100637a017

    13. [13]

      CHIANELLI R R, PRESTRIDGE E B, PECORARO T A, DENEUFVILLE J P. Molybdenum disulfide in the poorly crystalline "rag" structure[J]. Science, 1979,203(4385):1105-1107. doi: 10.1126/science.203.4385.1105

    14. [14]

      MOSES P G, HINNEMANN B, TOPSØE H, NØRSKOV J K. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions:A density functional study[J]. J Catal, 2007,248(2):188-203. doi: 10.1016/j.jcat.2007.02.028

    15. [15]

      ABART J, DELGADO E, ERTL G, JEZIOROWSKI H, KNÖZINGER H, THIELE N, WANG X Z H, TAGLAUER E. Surface structure and reduction behaviour of Nio-MoO3/Al2O3 catalysts[J]. Appl Catal, 1982,2(3):155-176. doi: 10.1016/0166-9834(82)80198-X

    16. [16]

      WANG C M, TSAI T C, WANG I. Deep hydrodesulfurization over Co/Mo catalysts supported on oxides containing vanadium[J]. J Catal, 2009,262(2):206-214. doi: 10.1016/j.jcat.2008.12.012

    17. [17]

      QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci, 2010,256(11):3413-3417. doi: 10.1016/j.apsusc.2009.12.043

    18. [18]

      HU An-peng, NIE Hong, CHEN Wen-bin, LONG Xiang-yun. Influence of citric acid on promoter role in CoMo/Al2O3 catalyst[J]. Pet Process Petroc, 2015,46(9):1-6.  

    19. [19]

      GRIGOR V V V, GEL MAN V N, SOBOLEVSKⅡ V S, KREINDEL A I, GOLOSMAN E Z, SALOMATIN G I, DANTSIG G A, ABDULLAEV T R, LAFER L I, TAKERSON V I. Study of reaction mechanism for conversion of carbon monoxide and steam on copper catalysts employing mass spectrometry and IR spectroscopy[J]. Russ Chem Bull, 1978,27(5):1015-1017. doi: 10.1007/BF00929015

    20. [20]

      CHAI Yong-ming, NAN Jun, XIANG Chun-e, LIU Yun-qi, LIU Chen-guang. Investigation of active phase of NiMoS/γ-Al2O3 prepared by thiosalt as precursor through HRTEM[J]. Acta Petrol Sinica(Pet. Process Sec., 2007,23(3):20-26.  

    21. [21]

      HE Sheng-ru, YUAN Zan-gen, LIU Jian-ping. Commercial application of hydrogenation catalyst with external presulfurizing technology[J]. Pet Process Petroc, 2004,35(8):34-36.  

  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    5. [5]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    6. [6]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    18. [18]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    19. [19]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    20. [20]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

Metrics
  • PDF Downloads(6)
  • Abstract views(1242)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return