Citation: ZHANG Kong-yuan, CHEN Yan-fei, FAN Si-qiang, CUI Cheng-xin, XIAO Chang-lin, LIU Chen-guang. Study on ex-situ presulfurization technologies with different presulfiding agents for CoMo-based sulfur-tolerant shift catalysts[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 346-354. shu

Study on ex-situ presulfurization technologies with different presulfiding agents for CoMo-based sulfur-tolerant shift catalysts

  • Corresponding author: ZHANG Kong-yuan, zkyuana@126.com
  • Received Date: 25 September 2017
    Revised Date: 8 January 2018

Figures(6)

  • (NH4)2S and Na2S were selected from several presulfiding agents. Industrial Co-Mo based sulfur-tolerant shift catalysts were ex-situ presulfided with different presulfurization technologies. The crystal structures, surface characteristics and micro appearance were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (HRTEM). (NH4)2S and Na2S as presulfiding agents did not show obvious effects on the crystal structures of the catalysts. Partial O-S exchange of the active components was observed when (NH4)2S was used for presulfirization. And when presulfided with Na2S, the active components still remained oxidation state. As the ex-situ presulfurization temperature increased, the extent of vulcanization was:S-Na2S > S-(NH4)2S > the general in situ pre-vulcanization. When presulfided with (NH4)2S or the general in situ pre-vulcanization, the stacking number of MoS2 layers was mainly two to three. And when presulfided with Na2S, the stacking number of MoS2 layers increased obviously, mostly three to five. The activity sequence of the catalysts was S-Na2S > S-(NH4)2S > the general in situ pre-vulcanization when the catalysts were tested in a micro-fixed reactor at temperatures of 285, 350 and 450℃ respectively.
  • 加载中
    1. [1]

      RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Cat Rev, 2009,51(3):325-440. doi: 10.1080/01614940903048661

    2. [2]

      GE H, LI X K, Wang J G, LU Z J, QIN Z F, ZHOU L G. Study on hydrodesulfurization of thiophene over Mo/Al2O3 catalyst presulfided by thiosulfate ammonium[J]. J Fuel Chem Technol, 2009,37(2):199-204. doi: 10.1016/S1872-5813(09)60016-5

    3. [3]

      LIU B, CHAI Y M, WANG Y J, ZHANG T T, LIU Y Q, LIU C G. A simple technique for preparation of presulfided eggshell MoS2/Al2O3 catalysts and kinetics approach for highly selective hydrodesulfurization of FCC gasoline[J]. Appl Catal, A, 2010,388(1/2):248-255.  

    4. [4]

      CHOUZIER S, VRINAT M, CSREI T, ROY-AUBERGER M, AFANASIEV P. HDS and HDN activity of (Ni, Co)Mo binary and ternary nitrides prepared by decomposition of hexamethylenetetramine complexes[J]. Appl Catal, A, 2011,400(1/2):82-90.  

    5. [5]

      LI Y P, LIU D P, LIU C G. Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performance of an ex situ presulfided MoNiP/Al2O3 catalyst:Model compounds study and pilot test for fluidized catalytic cracking (FCC) diesel oil[J]. Energy Fuels, 2010,24(2):820-829.  

    6. [6]

      XU Shi-ye. Research and development on presulfurizing agent for catalytic hydrogenation[D]. Xi`an: Xi`an Shiyou University, 2015.

    7. [7]

      GUILLAUME D, LOPEZ S, CSERI T. Process for sulfurization of catalysts for hydrotreatment: US, US7513990[P]. 2009.

    8. [8]

      GAO Y L, FANG X C, CHENG Z M. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China[J]. Front Chem Sci Eng, 2011,5(3):287-296. doi: 10.1007/s11705-010-0529-2

    9. [9]

      GAO Y L, FANG X C, CHENG Z M. A comparative study on the ex situ and in situ presulfurization of hydrotreating catalysts[J]. Catal Today, 2010,158(3):496-503.  

    10. [10]

      LIAN Y X, WANG H F, FANG W P, YANG Y Q. Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide[J]. Energy Chem, 2010,19(1):61-66.  

    11. [11]

      SEAMANS J D, WELCH J G, GASSER N G. Method of presulfiding a hydrotreating catalyst: US, US4943547[P]. 1990.

    12. [12]

      RATNASAMY P, RODRIQUE L, LEONARD A J. Structural and textural studies in molybdenum sulfide systems[J]. J Phys Chem, 1973,77(18):2242-2245. doi: 10.1021/j100637a017

    13. [13]

      CHIANELLI R R, PRESTRIDGE E B, PECORARO T A, DENEUFVILLE J P. Molybdenum disulfide in the poorly crystalline "rag" structure[J]. Science, 1979,203(4385):1105-1107. doi: 10.1126/science.203.4385.1105

    14. [14]

      MOSES P G, HINNEMANN B, TOPSØE H, NØRSKOV J K. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions:A density functional study[J]. J Catal, 2007,248(2):188-203. doi: 10.1016/j.jcat.2007.02.028

    15. [15]

      ABART J, DELGADO E, ERTL G, JEZIOROWSKI H, KNÖZINGER H, THIELE N, WANG X Z H, TAGLAUER E. Surface structure and reduction behaviour of Nio-MoO3/Al2O3 catalysts[J]. Appl Catal, 1982,2(3):155-176. doi: 10.1016/0166-9834(82)80198-X

    16. [16]

      WANG C M, TSAI T C, WANG I. Deep hydrodesulfurization over Co/Mo catalysts supported on oxides containing vanadium[J]. J Catal, 2009,262(2):206-214. doi: 10.1016/j.jcat.2008.12.012

    17. [17]

      QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci, 2010,256(11):3413-3417. doi: 10.1016/j.apsusc.2009.12.043

    18. [18]

      HU An-peng, NIE Hong, CHEN Wen-bin, LONG Xiang-yun. Influence of citric acid on promoter role in CoMo/Al2O3 catalyst[J]. Pet Process Petroc, 2015,46(9):1-6.  

    19. [19]

      GRIGOR V V V, GEL MAN V N, SOBOLEVSKⅡ V S, KREINDEL A I, GOLOSMAN E Z, SALOMATIN G I, DANTSIG G A, ABDULLAEV T R, LAFER L I, TAKERSON V I. Study of reaction mechanism for conversion of carbon monoxide and steam on copper catalysts employing mass spectrometry and IR spectroscopy[J]. Russ Chem Bull, 1978,27(5):1015-1017. doi: 10.1007/BF00929015

    20. [20]

      CHAI Yong-ming, NAN Jun, XIANG Chun-e, LIU Yun-qi, LIU Chen-guang. Investigation of active phase of NiMoS/γ-Al2O3 prepared by thiosalt as precursor through HRTEM[J]. Acta Petrol Sinica(Pet. Process Sec., 2007,23(3):20-26.  

    21. [21]

      HE Sheng-ru, YUAN Zan-gen, LIU Jian-ping. Commercial application of hydrogenation catalyst with external presulfurizing technology[J]. Pet Process Petroc, 2004,35(8):34-36.  

  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(6)
  • Abstract views(1168)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return