Citation: LI Chao, WANG Hui, ZHU Shan-shan, LIU Guang-bo, WU Jin-hu. Research on butene oligomerization reaction over the hemicellulose modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1088-1094. shu

Research on butene oligomerization reaction over the hemicellulose modified HZSM-5

  • Corresponding author: WANG Hui, huiwangsun@gmail.com
  • Received Date: 28 March 2017
    Revised Date: 5 June 2017

    Fund Project: the Applied Basic Research Programs of Qingdao 15-9-1-72-jchThe project was supported by the Chinese Academy of Sciences Research Program (No. XDA07070302), the Applied Basic Research Programs of Qingdao(Grant No. 15-9-1-72-jch) and the Foundation of state Key Laboratory of high-efficiency Utilization of Coal and Green Chemical Engineering (Grant No.2016-11)the Chinese Academy of Sciences Research Program XDA07070302the Foundation of state Key Laboratory of high-efficiency Utilization of Coal and Green Chemical Engineering 2016-11

Figures(5)

  • The HZSM-5 synthesized with modifying by different contents of hemicellulose.The morphology, texture and acidity were characterized with XRD, SEM, N2 adsorption-desorption, NH3-TPD and Py-FTIR. Butene oligomerization over the modified HZSM-5 was tested. The results indicate that the HZSM-5 with the 1.6% hemicellulose exhibits the best activity and stability on the butene oligomerization reaction, the conversion can maintain about 80% after 140 h on stream, with the highest selectivities of the trimer, tetramer and diesel component in the products. These may be related with its high BET surface and mesoporous volume, and the strongest acidity.
  • 加载中
    1. [1]

      ZHANG Li-min. Chain's foreign-trade dependence of crude oil more than 65%[J]. Econ Info Dai, 2017,1(6)1.  

    2. [2]

      KIM Y T, CHADA J P, XU Z, PAGAN-TORRES J, ROSENFELD D C, WINNIFORD W L, SCHMIDT E, HUBER G W. Low-temperature oligomerization of 1-butene with H-ferrierite[J]. J Catal, 2015,232:33-44.

    3. [3]

      ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786

    4. [4]

      JI Hua, LÜ Yi-jing, HU Jin-xian, XIANG Hong-wei, LI Yong-wang. Advances in the catalytic reaction of olefin oligomerization[J]. Prog Chem, 2002,14(2):146-155.  

    5. [5]

      SU Xiong, DUAN Hong-min, HUANG Yan-qiang, WANG Xiao-dong, ZHANG Tao. Progress on the catalytic oligomerization of light olefins to liquid fuel[J]. Chem Ind Eng Prog, 2016,35(7):2046-2056.  

    6. [6]

      LI X, JIANG X. Propylene oligomerization to produce diesel fuel on Zr-ZSM-5 catalyst[J]. Chem Tech Fuels Oil, 2013,49(2):156-164. doi: 10.1007/s10553-013-0427-7

    7. [7]

      COELHO A, CAEIRO G, LEMOS M A N D A, LEMOS F, RIBEIRO F R. 1-Butene oligomerization over ZSM-5 zeolite:Part 1-Effect of reaction conditions[J]. Fuel, 2013,111:449-460. doi: 10.1016/j.fuel.2013.03.066

    8. [8]

      IPATIEFF V N, CORSON B B, EGLOFF G. Polymerization, a new source of gasoline[J]. Ind Eng Chem, 1935,27(9):1077-1081. doi: 10.1021/ie50309a027

    9. [9]

      WULFERS M J, LOBO R F. Assessment of mass transfer limitations in oligomerization of buteneat high pressure on H-beta[J]. Appl Catal A:Gen, 2015,505:394-401. doi: 10.1016/j.apcata.2015.08.016

    10. [10]

      TABAK S A, KRAMBECK F J, GARWOOD W E. Conversion of propylene and butylene over ZSM-5 catalyst[J]. AIChE J, 1986,32(9):1526-1531. doi: 10.1002/(ISSN)1547-5905

    11. [11]

      QUANN R J, GREEN L A, TABAK S A, KRAMBECK F K. Chemistry of olefin oligomerization over ZSM-5 catalyst[J]. Ind Eng Chem Res, 1988,27(4):565-570. doi: 10.1021/ie00076a006

    12. [12]

      CHEN Wen-zao. The development of composite technology and comparison[J]. Pet Process Petrochem, 1988(2):16-21.  

    13. [13]

      SONG Rui-qi, XIANG Hong-wei, LI Yong-wang, ZHONG Bing. Alkene oligomerization to liquid fuels[J]. J Fuel Chem Technol, 1999,27:79-89.  

    14. [14]

      ZHANG Xin, WANG Jian-wei, ZHONG Jin. Advance in catalysts and technology for butene oligomerization[J]. Petrochem Technol, 2004,33(3):270-276.  

    15. [15]

      LI X, HAN D, WANG H, LIU G, WANG B, LI Z, WU J. Propene oligomerization to high-quality liquid fuels over Ni/HZSM-5[J]. Fuel, 2015,144:9-14. doi: 10.1016/j.fuel.2014.12.005

    16. [16]

      COETZEE J H, MASHAPA T N, PRINSLOO N M, RADEMAN J D. An improved solid phosphoric acid catalyst for alkene oligomerization in a Fischer-Tropsch refinery[J]. Appl Catal A:Gen, 2006,308:204-209. doi: 10.1016/j.apcata.2006.04.023

    17. [17]

      BELLUSSI G, MIZIA F, CALEMMA V, POLLESEL P, MILLINI R. Oligomerization of olefins from light cracking naphtha over zeolite-based catalyst for the production of high quality diesel fuel[J]. Micropor Mesopor Mat, 2012,164:127-134. doi: 10.1016/j.micromeso.2012.07.020

    18. [18]

      BEHR A, RENTMEISTER N, SEIDENSTICKER T, VOSBERG J, STEPHAN P, MASCHMEYER D. Highly selective dimerization and trimerization of isobutene to linearly linked products by using nickel catalysts[J]. Chemistry-ASIAN J, 2014,9(2):596-601. doi: 10.1002/asia.201301263

    19. [19]

      O'CONNOR C T, KOJIMA M. Alkene oligomerization[J]. Catal Today, 1990,6(3):329-349. doi: 10.1016/0920-5861(90)85008-C

    20. [20]

      POPOV A G, FEDOSOV D A, IVANOVA I I, VEDERNIKOV O S, KLEIMENOV A V, KONDRASHEV D O, MIROSHKINA V D, ABRASHENKOV P A, KUZENTSOV S E. A ZSM-5 zeolite-based catalyst for oligomerization of the butane-butylene fraction[J]. Petrol Chem, 2016,56(3):237-243. doi: 10.1134/S0965544116030117

    21. [21]

      Quann R J, Green L A, Tabak S A, Krambeck F J. Chemistry of olefin oligomerization over ZSM-5 catalyst[J]. Ind Eng Chem Res, 1988,27(4):565-570. doi: 10.1021/ie00076a006

    22. [22]

      CORMA A, MARTINEZ C, DOSKOCIL E. Designing MFI-based catalysts with improved catalyst life for oligomerization to high-quality liquid fuels[J]. J Catal, 2013,300:183-196. doi: 10.1016/j.jcat.2012.12.029

    23. [23]

      EMDADI L, Wu Y, Zhu G, CHANG C, FAN W, PHAM T, LOBO R F, LIU D. Dual template synthesis of meso-and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions[J]. Chem Mater, 2014,26(3):1345-1355. doi: 10.1021/cm401119d

    24. [24]

      LIN L, QIU C, ZHUO Z, ZHANG D, ZHAO S, WU H, LIU Y, HE M. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5[J]. J Catal, 2014,309:136-145. doi: 10.1016/j.jcat.2013.09.011

    25. [25]

      DU J, LI B, LI C, ZHANG Y, YU G, WANG H, MU X. Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process[J]. Int J Bioll Macromol, 2016,88:451-456. doi: 10.1016/j.ijbiomac.2016.04.013

    26. [26]

      SCOTT G, THOMPSON R W, DIXON A G, SACCO A. The role of triethanolamine in zeolite crystallization[J]. Zeolites, 1990,10(1):44-50. doi: 10.1016/0144-2449(90)90093-7

    27. [27]

      VALTCHEV V, MINTOVA S, VULCHEV I, LAZAROVA V. Influence of reactive radicals in cellulose fibres on the formation of zeolite coatings[J]. J Chem Soc, Chem Commun, 1994(18):2087-2088. doi: 10.1039/c39940002087

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    5. [5]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    8. [8]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    18. [18]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    19. [19]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(4)
  • Abstract views(2029)
  • HTML views(998)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return