Citation: Wen Luxin, Xu Yi, Xiang Songtao, Chen Li. Progress in Endotoxin Detection Based on Biosensor[J]. Chemistry, ;2018, 81(1): 29-36. shu

Progress in Endotoxin Detection Based on Biosensor

Figures(3)

  • Endotoxin is well established as a main reason for endoxemia and organs failure, which are severely harmful to human health. So far, much more attention has been paid to develop a efficient and sensitive detection method with high specificity. Because of the superior efficiency and sensitivity, easy to automation and miniaturization, biosensors which is confronted with substantial development space is playing an increasingly important role in the field of endotoxin detection. In this paper, the detection methods of endotoxin in recent years were introduced briefly, and then paid special emphasis on summarizing the optical and electrochemical biosensors applied in endotoxin detection. The challenges and development prospects of endotoxin detection by biosensors are also reviewed.
  • 加载中
    1. [1]

      A H Ding, F Porteu, E Sanchez et al. Science, 1990, 248(4953):370~372. 

    2. [2]

      APreston, R E Mandrell, B W Gibson et al. Crit. Rev. Microbiol., 1996, 22(3):139~180. 

    3. [3]

      J Bhattacharyya, S Biswas, A G Datta. Curr. Med. Chem., 2004, 11(3):359~368. 

    4. [4]

      N Hirata, Y Yanagawa, M Satoh et al. Cell. Immunol., 2010, 261(1):37~41. 

    5. [5]

      K Lawrence. Crit. Care Nurs. Clin. North Am., 2011, 23(2):323~327. 

    6. [6]

      K Brandenburg, A B Schromm, T Gutsmann. Curr. Top. Med. Chem., 2004, 4(11):1127~1146. 

    7. [7]

      C Y Park, S H Jung, J P Bak et al. Biologicals, 2005, 33(3):145~151. 

    8. [8]

      J F Cooper, J Levin, W H Jr. J. Lab. Clin. Med., 1971, 78(1):138~143.

    9. [9]

      J S Bolden, R E Warburton, R Phelan et al. Biologicals, 2016, 44(5):434~440. 

    10. [10]

      T Liu, W Zhang, L Zhou et al. Anal. Chim. Acta, 2017, 961(1):106~111.

    11. [11]

      J F Cooper, M E Weary, F T Jordan. PDA J. Pharm. Sci. Tech., 1997, 51(1):2~6.

    12. [12]

      P F Roslansky, T J Novitsky. J. Clin. Microbiol., 1991, 29(11):2477~2483.

    13. [13]

      A H Mohammed, D E Mccallus, N L Norcross. Vet. Microbiol., 1988, 18(1):27~39. 

    14. [14]

      M I Prodromidis. Electrochim. Acta, 2010, 55(14):4227~4233. 

    15. [15]

      A Turner. Trends Biotechnol., 2013, 31(3):119~120. 

    16. [16]

      G S Wilson, R Gifford. Biosens. Bioelectron., 2005, 20(12):2388~2403. 

    17. [17]

      X Fan, I M White, S I Shopova et al. Anal. Chim. Acta, 2008, 620(1/2):8~26.

    18. [18]

      A Zuzuarregui, D Souto, E Pérez-Lorenzo et al. Analyst, 2015, 140(2):654~660. 

    19. [19]

      A Zuzuarregui, M C Morant-Minana, E Perez-Lorenzo et al. IEEE Sens. J., 2013, 14(1):270~277.

    20. [20]

      C Luo, Y Yan, T Yu et al. Electroanalysis, 2012, 24(5):1186~1191. 

    21. [21]

       

    22. [22]

      X L Xiong, S M Wang, Y Zhang et al. Appl. Mech. Mater., 2012, 195~196(1):874~878. 

    23. [23]

      S M Borisov, O S Wolfbeis. Chem. Rev., 2008, 108(2):423~427. 

    24. [24]

      E A James, K Schmeltzer, F S Ligler. Appl. Biochem. Biotechnol., 1996, 60(3):189~202. 

    25. [25]

      S Voss, R Fischer, G Jung et al. J. Am. Chem. Soc., 2012, 129(3):554~561.

    26. [26]

      J Wu, A Zawistowski, M Ehrmann et al. J. Am. Chem. Soc., 2011, 133(25):9720~9723. 

    27. [27]

      M Lan, J Wu, W Liu et al. J. Am. Chem. Soc., 2012, 134(15):6685~6694. 

    28. [28]

      S Ebrahim, M Reda, A Hussien et al. Spectrochim. Acta A, 2015, 150(1):212~219.

    29. [29]

      K L Seng, P Chen, F L Lee et al. Anal. Chem., 2015, 87(18):9408~9412. 

    30. [30]

      R Chaney, J Rider, D Pamphilon. Transfusion Med., 1999, 9(3):177~188. 

    31. [31]

      D R Shelton, J S Karns. Appl. Environ. Microbiol., 2001, 67(7):2908~2915. 

    32. [32]

      S Xie, Y Dong, Y Yuan et al. Anal. Chem., 2016, 88(10):5218~5224. 

    33. [33]

      B Barlen, S D Mazumdar, O Lezrich et al. Sensors, 2007, 7(8):1427~1446.

    34. [34]

      P D Keathley, J T Hastings. Plasmonics, 2012, 7(1):59~69. 

    35. [35]

      X Dou, B M Phillips, P Y Chung et al. Optics Lett., 2012, 37(17):3681~3683. 

    36. [36]

      U Yogeswaran, S M Chen. Sensors, 2008, 8(1):290~313. 

    37. [37]

      X Luo, J J Davis. Chem. Soc. Rev., 2013, 42(13):5944~5947. 

    38. [38]

      M Mehrvar, M Abdi. Anal. Sci., 2004, 20(8):1113~1126. 

    39. [39]

      L Lu, G Chee. Biosens. Bioelectron., 2013, 42(1):492~495.

    40. [40]

      E Katz, I Willner. Electroanalysis, 2010, 15(11):913~947.

    41. [41]

      J T Cao, X Y Hao, Y D Zhu et al. Anal. Chem., 2012, 84(15):6775~6782. 

    42. [42]

      J A Ho, H C Chang, W T Su. Anal. Chem., 2012, 84(7):3246~3253. 

    43. [43]

      W Su, M Lin, H Lee et al. Biosens. Bioelectron., 2012, 32(1):32~36. 

    44. [44]

      M Cho, L Chun, M Lin et al. Sens. Actuat. B, 2012, 174(3):490~494. 

    45. [45]

      M D Oliveira, C A Andrade, M T Correia et al. J. Colloid Interf. Sci., 2011, 362(1):194~201. 

    46. [46]

      W Su, S E Kim, M Cho et al. Innate Immun., 2013, 19(4):388~397. 

    47. [47]

      P Miao. RSC Adv., 2013, 3(25):9606~9617. 

    48. [48]

      N Y Wu, W Gao, X L He et al. Biosens. Bioelectron., 2013, 39(1):210~214. 

    49. [49]

      G A Zelada-Guillén, J L Sebastián-Avila, P Blondeau et al. Biosens. Bioelectron., 2012, 31(1):226~232. 

    50. [50]

      L Bai, Y Chai, X Pu et al. Nanoscale, 2014, 6(5):2902~2908. 

    51. [51]

      M R Guascito, D Chirizzi, C Malitesta et al. Electrochem. Commun., 2012, 22(8):45~48.

    52. [52]

      Z D Gao, Y Qu, T Li et al. Sci. Reports, 2014, 137(4):5113~5122.

    53. [53]

      A D Ryabov, R Cerón-Camacho, O Saavedra-Díaz et al. Anal. Chem., 2012, 84(21):9096~9100. 

    54. [54]

      K Y Inoue, M Matsudaira, R Kubo et al. Lab Chip, 2012, 12(18):3481~3490. 

    55. [55]

      P Miao, K Han, J Qi et al. Electrochem. Commun., 2013, 26(1):29~32.

    56. [56]

      Y H Lin, S H Chen, Y C Chuang et al. Biosens. Bioelectron., 2008, 23(12):1832~1837. 

    57. [57]

      J Wang. Biosens. Bioelectron., 2006, 21(10):1887~1892. 

    58. [58]

      R Monošík, M Stred' ansky', E Šturdík. J. Clin. Lab. Anal., 2012, 26(1):22~34. 

    59. [59]

      G Yang, F Zhao, B Zeng. Biosens. Bioelectron., 2014, 53(9):447~452. 

    60. [60]

      D S Hélder, J O G Pacheco, M M E Júlia et al. Biosens. Bioelectron., 2014, 52(2):56~61.

    61. [61]

      T Gan, J Sun, W Meng et al. Food Chem., 2013, 141(4):3731~3737. 

    62. [62]

      L Rassaei, F Marken, M Sillanpää et al. Trends Anal. Chem., 2011, 30(11):1704~1715. 

    63. [63]

      M I Mead, O A M Popoola, G B Stewart et al. Atmos. Environ., 2013, 70(2):186~203.

    64. [64]

      R L Bunde, E J Jarvi, J J Rosentreter. Talanta, 1998, 46(6):1223~1236. 

    65. [65]

      K G Ong, J M Leland, K Zeng et al. Biosens. Bioelectron., 2006, 21(12):2270~2274. 

    66. [66]

      H Muramatsu, M Suda, T Ataka et al. Sens. Actuat. A, 1990, 21(1):362~368.

    67. [67]

      S Sheikh, C Blaszykowski, A Romaschin et al. RSC Adv., 2016, 6(44):38037~38041. 

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    14. [14]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

Metrics
  • PDF Downloads(33)
  • Abstract views(6063)
  • HTML views(1636)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return