Citation: Xianfeng Jia, Wei Chen, Cheng Ma, Jitong Wang, Wenming Qiao, Licheng Ling. Research Progress in the Preparation of Phenolic Resin Based Carbon Aerogels via Ambient Pressure Drying[J]. Chemistry, ;2021, 84(3): 194-203. shu

Research Progress in the Preparation of Phenolic Resin Based Carbon Aerogels via Ambient Pressure Drying

Figures(12)

  • Phenolic resin based carbon aerogels typically represented by resorcinol-formaldehyde are a kind of lightweight, porous and amorphous carbon nanomaterials with broad applications in the field of catalysis, adsorption, electrochemistry and thermal insulation. However, the complex and high-cost supercritical drying process greatly restricts the industrial preparation and application of carbon aerogels, thus ambient pressure drying process has become one of the most widely studied technologies for preparing carbon aerogels. In this paper, four structure control methods for the preparation of phenolic resin based carbon aerogels by ambient pressure drying are reviewed, including control of sol-gel reaction parameters, adding templates method, fiber reinforcement method and additives method. The structural characteristics of materials obtained by these methods and the advantages and disadvantages of the preparation process are also summarized. Finally, the future development is prospected.
  • 加载中
    1. [1]

      Tamon H, Ishizaka H, Mikami M, et al. Carbon, 1997, 35(6): 791~796. 

    2. [2]

      Al-muhtaseb S A, Ritter J A. Adv. Mater., 2003, 15(2): 101~114. 

    3. [3]

      Elkhatat A M, Al-muhtaseb S A. Adv. Mater., 2011, 23(26): 2887~2903. 

    4. [4]

      Antonietti M, Fechler N, Fellinger T P. Chem. Mater., 2014, 26(1): 196~210. 

    5. [5]

      Lee J H, Park S J. Carbon, 2020, 163: 1~18. 

    6. [6]

       

    7. [7]

      Wiener M, Reichenauer G, Braxmeier S, et al. Int. J. Thermophys., 2009, 30(4): 1372~1385. 

    8. [8]

      Hu L, He R J, Lei H S, et al. Int. J. Thermophys., 2019, 40(4): 39. 

    9. [9]

      Moreno-Castilla C, Maldonado-Hodar F J. Carbon, 2005, 43(3): 455~465. 

    10. [10]

      Long D H, Chen Q J, Qiao W M, et al. Chem. Commun., 2009, 26: 3898~3900.

    11. [11]

      Hou X X, Zhao J X, Liu J J, et al. New J. Chem., 2019, 43(24): 9430~9438. 

    12. [12]

      Meena A K, Mishra G K, Rai P K, et al. J. Hazard. Mater., 2005, 122(1-2): 161~170. 

    13. [13]

      Du J, Li W C, Ren Z X, et al. J. Energy Chem., 2020, 42: 56~61. 

    14. [14]

      Pillai A, Kandasubramanian B. J. Chem. Eng. Data, 2020, 65(5): 2255~2270. 

    15. [15]

      Fischer U, Saliger R, Bock V, et al. J. Porous Mater., 1997, 4(4): 281~285. 

    16. [16]

      Li J, Wang X Y, Huang Q H, et al. J. Power Sources, 2006, 158(1): 784~788. 

    17. [17]

      Li F, Xie L J, Sun G H, et al. Micropor. Mesopor. Mater., 2019, 279: 293~315. 

    18. [18]

      Pekala R W. J. Mater. Sci., 1989, 24(9): 3221~3227. 

    19. [19]

      Sun H, Xu Z, Gao C. Adv. Mater., 2013, 25(18): 2554~2560. 

    20. [20]

      Li S L, He Y, Jing C W, et al. Carbon Lett., 2018, 28(1): 16~23.

    21. [21]

      Luo Q S, Zheng H Z, Hu Y J, et al. Ind. Eng. Chem. Res., 2019, 58(38): 17768~17775. 

    22. [22]

      Hu H, Zhao Z, Wan W, et al. Adv. Mater., 2013, 25(15): 2219~2223. 

    23. [23]

      Lv P, Tan X W, Yu K H, et al. Carbon, 2016, 99: 222~228. 

    24. [24]

      Zu G Q, Kanamori K, Nakanishi K, et al. ACS Appl. Mater. Interf., 2019, 11(46): 43533~43542. 

    25. [25]

      Mukai S R, Tamitsuji C, Nishihara H, et al. Carbon, 2005, 43(12): 2628~2630. 

    26. [26]

      Scherdel C, Reichenauer G. Micropor. Mesopor. Mater., 2009, 126(1-2): 133~142. 

    27. [27]

      Mahata N, Pereira M F R, Suarez-Garcia F, et al. J. Colloid Interf. Sci., 2008, 324(1-2): 150~155. 

    28. [28]

      Kim H J, Kim J H, Kim W I, et al. Korean J. Chem. Eng., 2005, 22(5): 740~744. 

    29. [29]

      Long D H, Zhang J, Yang J H, et al. New Carbon Mater., 2008, 23(2): 165~170. 

    30. [30]

      Wu D C, Fu R W, Zhang S T, et al. J. Non-Cryst. Solids, 2004, 336(1): 26~31. 

    31. [31]

      Yan M F, Zhang L H, He R, et al. J. Porous Mater., 2015, 22(3): 699~703. 

    32. [32]

      Nishihara H, Mukai S R, Tamon H. Carbon, 2004, 42(4): 899~901. 

    33. [33]

      Hao P, Zhao Z H, Tian J, et al. Nanoscale, 2014, 6(20): 12120~12129. 

    34. [34]

      Vazhayal L, Wilson P, Prabhakaran K. Chem. Eng. J., 2020, 381: 12268.

    35. [35]

      Rojas-Cervantes M L. J. Mater. Sci., 2015, 50(3): 1017~1040. 

    36. [36]

      Wu D, Fu R. J. Porous Mater., 2008, 15(1): 29~34. 

    37. [37]

      Wang C, Jin X, Cheng H, et al. Mater. Des., 2017, 131: 177~185. 

    38. [38]

      Sun W, Du A, Gao G, et al. Micropor. Mesopor. Mater., 2017, 253: 71~79. 

    39. [39]

      Hasegawa G, Yano T, Akamatsu H, et al. J. Sol-Gel Sci. Technol., 2020, doi. org/10.1007/s10971-020-05236-9.

    40. [40]

      Yang Z, Li J, Xu X, et al. J. Mater. Sci. Technol., 2020, 50: 66~74. 

    41. [41]

      Huang Y, Cai H, Feng D, et al. Chem. Commun., 2008, 23: 2641~2643.

    42. [42]

      Zhou H, Xu S, Su H, et al. Chem. Commun., 2013, 49(36): 3763~3765. 

    43. [43]

      Guo M Q, Huang J Q, Kong X Y, et al. New Carbon Mater., 2016, 31(3): 352~362. 

    44. [44]

      Cho G, Lee J Y, Yoon T H. RSC Adv., 2018, 8(38): 21326~21331. 

    45. [45]

      Yoon H-J, Lee J Y, Lee J-S, et al. RSC Adv., 2019, 9(17): 9480~9485. 

    46. [46]

      Xiong Y J, Xie Y, Li X X, et al. Carbon, 2004, 42(8-9): 1447~1453. 

    47. [47]

      Yao Z, Zhu X, Li X, et al. Carbon, 2007, 45(7): 1566~1570. 

    48. [48]

      Yu J, Liu S, Chen S, et al. Ind. Eng. Chem. Res., 2017, 56(36): 10028~10035. 

    49. [49]

      Zhang Z, Zhao S, Chen G B, et al. Micropor. Mesopor. Mater., 2020, 296: 1~9.

    50. [50]

      Zhu Y, Hu H, Li W, et al. J. Non-Cryst. Solids, 2006, 352(30-31): 3358~3362. 

    51. [51]

      Wu D C, Fu R W, Zhang S T, et al. Carbon, 2004, 42(10): 2033~2039. 

    52. [52]

      Jia X F, Dai B W, Zhu Z X, et al. Carbon, 2016, 108: 551~560. 

    53. [53]

      Enterria M, Figueiredo J L. Carbon, 2016, 108: 79~102. 

    54. [54]

       

    55. [55]

      Benzigar M R, Talapaneni S N, Joseph S, et al. Chem. Soc. Rev., 2018, 47(8): 2680~2721. 

    56. [56]

      Lee K T, Oh S M. Chem. Commun., 2002, 22: 2722~2723.

    57. [57]

      Wu D C, Fu R W, Dresselhaus M S, et al. Carbon, 2006, 44(4): 675~681. 

    58. [58]

      Hao G P, Li W C, Wang S, et al. Carbon, 2011, 49(12): 3762~3772. 

    59. [59]

      Hasegawa G, Kanamori K, Kiyomura T, et al. Chem. Mater., 2016, 28(11): 3944~3950. 

    60. [60]

       

    61. [61]

      Shi J S, Yan N F, Cui H M, et al. ACS Sustain. Chem. Eng., 2019, 7(24): 19513~19521. 

    62. [62]

      Zhang H, Feng J, Li L, et al. RSC Adv., 2019, 9(11): 5967~5977. 

    63. [63]

      Qiu D, Cao T, Zhang J, et al. J. Energy Chem., 2019, 31: 101~106. 

    64. [64]

      Lu A H, Li W C, Schmidt W, et al. Micropor. Mesopor. Mater., 2006, 95(1-3): 187~192. 

    65. [65]

      Zheng X, Cao X, Li X, et al. Nanoscale, 2017, 9(3): 1059~1067. 

    66. [66]

      Wu G P, Yang J B, Wang D P, et al. Mater. Lett., 2014, 115: 1~4. 

    67. [67]

      Linhares T, De Amorim M T P, Duraes L. J. Mater. Chem. A, 2019, 7(40): 22768~22802. 

    68. [68]

      Wang J, Glora M, Petricevic R, et al. J. Porous Mater., 2001, 8(2): 159~165. 

    69. [69]

      Feng J, Zhang C, Feng J, et al. ACS Appl. Mater. Interf., 2011, 3(12): 4796~4803. 

    70. [70]

      Seraji M M, Kianersi S, Hosseini S H, et al. J. Non-Cryst. Solids, 2018, 491: 89~97. 

    71. [71]

       

    72. [72]

      Liu L, Yang J, Meng Q. J. Sol-Gel Sci. Technol., 2013, 66(1): 1~5. 

    73. [73]

      Haghgoo M, Yousefi A A, Mehr M J Z, et al. J. Mater. Sci., 2015, 50(18): 6007~6020. 

  • 加载中
    1. [1]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    6. [6]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    7. [7]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    8. [8]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    16. [16]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(43)
  • Abstract views(1740)
  • HTML views(468)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return