Citation: Zhang Xiaohui, Yang Limin, Ma Hongchao, Jiang Lei. Application of Quantum Dot Sensors in the Detection of Organophosphorus Pesticide Residues[J]. Chemistry, ;2017, 80(11): 1014-1020. shu

Application of Quantum Dot Sensors in the Detection of Organophosphorus Pesticide Residues

  • Corresponding author: Jiang Lei, leijiang@upc.edu.cn
  • Received Date: 23 May 2017
    Accepted Date: 29 July 2017

Figures(3)

  • As a nerve agent, the organophosphorus pesticide has been overused with many potential hazards, such as crops and environmental pollution, toxicity toward people and animals, etc. The investigation of highly sensitive and specific method for the detection of organophosphorus pesticide residues is of great significance for the food safety and human health. Owing to the advantages of high sensitivity, specificity, rapid response, and easy operation, the approach based on quantum dot sensors has become a hot topic in the field of organophosphorus pesticide detection. In this paper, the application of quantum dot sensors in the detection of organophosphorus pesticide residues in the crops, environment and biological sample was reviewed, and the prospect of this field was also discussed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      P Kumar, K H Kim, A Deep. Biosens. Bioelectron., 2015, 70: 469~481. 

    4. [4]

      D Knapton, M Burnworth, S J Rowan et al. Angew. Chem. Int. Ed., 2006, 45(35): 5825~5829. 

    5. [5]

      A Smith, S Gangolli. Food Chem. Toxicol., 2002, 40(6): 767~779.

    6. [6]

      A J Starmer, N D Spector, R Srivastava et al. New Engl. J. Med., 2014, 371(19): 1803~1812.

    7. [7]

      A M Aboul-Enein, F Abou Elella, E Abdullah. J. Appl. Sci. Res., 2010, 6(6): 600~608. 

    8. [8]

       

    9. [9]

      X Zhao, W Kong, J Wei et al. Food Chem., 2014, 162: 270~276. 

    10. [10]

      K Seebunrueng, Y Santaladchaiyakit, S Srijaranai. Talanta, 2015, 132: 769~774. 

    11. [11]

       

    12. [12]

      J L Armstrong, R L Dills, J Yu et al. J. Environ. Sci. Heal. A, 2014, 49(2): 102~108. 

    13. [13]

      M A Kalwat, C Wichaidit, A Y Nava Garcia et al. ACS Sensors, 2016, 1(10): 1208~1212.

    14. [14]

      R Brasca, M C Onaindia, H C Goicoechea et al. Sensors, 2016, 16(10): 1652.

    15. [15]

      G S Kulkarni, K Reddy, Z Zhong et al. Nat. Commun., 2014, 5: 4736. 

    16. [16]

      C M Tyrakowski, P T Snee. Anal. Chem., 2014, 86(5): 2380~2386. 

    17. [17]

      W Zhang, A M Asiri, D Liu et al. Trend. Anal. Chem., 2014, 54: 1~10.

    18. [18]

      D H Shin, S Kim, J M Kim et al. Adv. Mater., 2015, 27(16): 2614~2620. 

    19. [19]

      J Callan, F M Raymo. Quantum Dot Sensors: Technology and Commercial Applications. Pan Stanford Publishing, 2013.

    20. [20]

      M F Frasco, N Chaniotakis. Sensors, 2009, 9(9): 7266~7286. 

    21. [21]

      G Xue, Z Yue, Z Bing et al. Analyst, 2016, 141(16): 4941~4946. 

    22. [22]

      J Guo, H Li, M Xue et al. Food Anal. Method., 2014, 7(6): 1247~1255. 

    23. [23]

      Z Zheng, Y Zhou, X Li et al. Biosens. Bioelectron., 2011, 26(6): 3081~3085. 

    24. [24]

      C S Jacobsen, M H Hjelmsø. Curr. Opin. Biotechnol., 2014, 27: 15~20. 

    25. [25]

      A Ivanov, R Younusov, G Evtugyn et al. Talanta, 2011, 85(1): 216~221. 

    26. [26]

      A Sahin, K Dooley, D M Cropek et al. Sens. Actuat. B, 2011, 158(1): 353~360. 

    27. [27]

      M Kiani, M A Tehrani, H Sayahi. Anal. Chim. Acta, 2014, 839: 26~33. 

    28. [28]

      E Milkani, C R Lambert, W G McGimpsey. Anal. Biochem., 2011, 408(2): 212~219. 

    29. [29]

       

    30. [30]

      B Pérez-López, A Merkoçi. Adv. Funct. Mater., 2011, 21(2): 255~260. 

    31. [31]

      G A Alonso, G Istamboulie, T Noguer et al. Sens. Actuat. B, 2012, 164(1): 22~28. 

    32. [32]

      R K Mishra, R B Dominguez, S Bhand et al. Biosens. Bioelectron., 2012, 32(1): 56~61. 

    33. [33]

      D de Almeida Azevedo, S Lacorte, T Vinhas et al. J. Chromatogr. A, 2000, 879(1): 13~26. 

    34. [34]

      X Li, Z Zheng, X Liu et al. Biosens. Bioelectron., 2015, 64: 1~5. 

    35. [35]

      D Wang, J He, N Rosenzweig et al. Nano Lett., 2004, 4(3): 409~413. 

    36. [36]

      N H Nguyen, T G Duong, N T Pham et al. Adv. Nat. Sci. : Nanosci. Nanotechnol., 2015, 6(1): 015015. 

    37. [37]

      T K C Tran, D C Vu, T D T Ung et al. Adv. Nat. Sci. : Nanosci. Nanotechnol., 2012, 3(3): 035008. 

    38. [38]

       

    39. [39]

      X Meng, J Wei, X Ren et al. Biosens. Bioelectron., 2013, 47: 402~407. 

    40. [40]

      R Ban, J Zhu, J Zhang. Microchim. Acta, 2014, 181(13-14): 1591~1599. 

    41. [41]

      Y Yi, G Zhu, C Liu et al. Anal. Chem., 2013, 85(23): 11464~11470.

    42. [42]

      X Gao, G Tang, X Su. Biosens. Bioelectron., 2012, 36(1): 75~80. 

    43. [43]

      M C Mancini, B A Kairdolf, A M Smith et al. J. Am. Chem. Soc., 2008, 130(33): 10836~10837. 

    44. [44]

      K Lai, N J Stolowich, J R Wild. Arch. Biochem. Biophys., 1995, 318(1): 59~64. 

    45. [45]

      R V Cooney P D Ross. J. Agric. Food Chem., 1987, 35(5): 789~793. 

    46. [46]

      X Yan, H Li, X Wang et al. Talanta, 2015, 131: 88~94. 

    47. [47]

      N Biricik, B Gümgüm. Thermochim. Acta, 2004, 417(1): 43~45. 

    48. [48]

      X Yan, H Li, Y Yan et al. Food Chem., 2015, 173: 179~184.

    49. [49]

      X Ji, J Zheng, J Xu et al. J. Phys. Chem. B, 2005, 109(9): 3793~3799. 

    50. [50]

      X Yan, H Li, X Han et al. Biosens. Bioelectron., 2015, 74: 277~283. 

    51. [51]

      D Du, W Chen, W Zhang et al. Biosens. Bioelectron., 2010, 25(6): 1370~1375. 

    52. [52]

      S Umrao, M H Jang, J H Oh et al. Carbon, 2015, 81: 514~524. 

    53. [53]

      K Zhang, Q Mei, G Guan et al. Anal. Chem., 2010, 82(22): 9579~9586. 

    54. [54]

      Q Sun, Q Yao, Z Sun et al. Chin. J. Chem., 2011, 29(10): 2134~2140.

    55. [55]

      L Miranda-Contreras, R Gómez-Pérez, G Rojas et al. J. Occup. Health, 2013, 55(3): 195~203. 

    56. [56]

      M G Lionetto, R Caricato, A Calisi et al. Biomed. Res. Int., 2013, 2013. 

    57. [57]

      A A Malekirad, M Faghih, M Mirabdollahi et al. Arch. Ind. Hygiene Toxicol., 2013, 64(1): 1~8. 

    58. [58]

       

    59. [59]

      N Taheri, M Lan, P Wei et al. Food Anal. Method., 2016, 9(10): 2896~2905. 

    60. [60]

      A Uclés, A V García, M D G García et al. Anal. Methods, 2015, 7(21): 9158~9165. 

    61. [61]

      G Liu, J Wang, R Barry et al. Chem. Eur. J., 2008, 14(32): 9951~9959. 

    62. [62]

      W Zhang, X Ge, Y Tang et al. Analyst, 2013, 138(18): 5431~5436.

    63. [63]

      H Wang, J Wang, C Timchalk et al. Anal. Chem., 2008, 80(22): 8477~8484.

    64. [64]

      X Zhang, H Wang, C Yang et al. Biosens. Bioelectron., 2013, 41: 669~674. 

    65. [65]

      U Aryal, C Lin, J Kim et al. Anal. Chim. Acta, 2012, 723: 68~75. 

    66. [66]

      D Du, J Wang, L Wang et al. Anal. Chem., 2011, 83(10): 3770~3777.

    67. [67]

      K B Woodburn, W R Green, H E Westerdahl. J. Agric. Food Chem., 1993, 41(11): 2172~2177. 

    68. [68]

      K Maya, R Singh, S Upadhyay et al. Process Biochem., 2011, 46(11): 2130~2136. 

    69. [69]

      Z Zou, D Du, J Wang et al. Anal. Chem., 2010, 82(12): 5125~5133.

    70. [70]

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    7. [7]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    8. [8]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    9. [9]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    10. [10]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    17. [17]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    18. [18]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    19. [19]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    20. [20]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

Metrics
  • PDF Downloads(19)
  • Abstract views(4717)
  • HTML views(1027)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return