Citation: HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1329-1336. shu

Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking

  • Received Date: 19 August 2019
    Revised Date: 15 October 2019

    Fund Project: the National Natural Science Foundation of China U1610221the National Key Research and Development Project 2016YFB0600305The project was supported by the National Key Research and Development Project (2016YFB0600305) and the National Natural Science Foundation of China (U1610221)

Figures(8)

  • The heavy fraction of Hami pyrolysis tar was firstly hydrocracked in a suspended bed reactor, and the as-prepared light product oil was analyzed. The light oil that retains the basic unit structure characteristics of coal and contains a large number of naphthenes and aromatic compounds as well as high nitrogen content was then used to produce naphtha in a 200 mL fixed bed refining-cracking tandem unit. The effect of different temperatures on the hydrocracking reaction was investigated at reaction pressure of 15 MPa. The results show that the optimum cracking temperature is 390℃, at which the conversion of >180℃ fraction is 53.69%, the hydrogen consumption is 5.13%, and the < 180℃ naphtha yield reaches 56.8%. The main components of naphtha are C6-9 hydrocarbons with the naphtha of 71.99%, the naphthene of 3.13% aromatics and the aromatic potential of 70.1. The catalytic reforming of cracked naphtha under optimum conditions to produce BTXE was conducted and compared with that with the middle base naphtha of petroleum series as feed. After reforming, the yield of BTXE from cracking naphtha is 55.85%, 25.53% higher than that from petroleum-based naphtha. The advantages and characteristics of coal-based oil are highlighted. It is verified that naphtha from coal pyrolysis heavy oil hydrocracking is a good raw material for preparing BTXE.
  • 加载中
    1. [1]

      WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci, 2012,27(3):382-388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    2. [2]

      ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Xin, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. J Fuel Chem Technol, 2013,41(2):134-138. doi: 10.3969/j.issn.0253-2409.2013.02.002 

    3. [3]

      KARTHIKEYAN M, WU Z, MUJUMDAR A S. Low-rank coal drying technologies-Current status and new developments[J]. Drying Technol, 2009,27(3):403-415. doi: 10.1080/07373930802683005

    4. [4]

      CHESHKO F F, SKRIPCHENKO N P, BANNIKOV L P, KARCHAKOVA V V, PROKHACH E E. Properties of coal tar characterized by slight pyrolysis[J]. Coke Chem, 2014,57(6):255-259. doi: 10.3103/S1068364X14060027

    5. [5]

      HE Guo-feng, DAI He-wu, JIN Jia-lu, DU Ming-hua. Relations among yields, characterization of low temperature tars and pyrolysis temperature[J]. J China Coal Soc, 1994,19(6):591-597.  

    6. [6]

      SUN Z H, ZHANG W H. Chemical composition and structure characterization of distillation residues of middle-temperature coal tar[J]. Chin J Chem Eng, 2017(6):815-820.  

    7. [7]

      FAN X H, FEI Y Q, CHEN L, LI W. Distribution and structural analysis of polycyclic aromatic hydrocarbons abundant in coal tar pitch[J]. Energy Fuels, 2017,31(5):4694-4704. doi: 10.1021/acs.energyfuels.6b03113

    8. [8]

      XIA Qiang-bin. Hydrocracking technology and unit design for naphtha production[J]. Pet Process Petrochem, 2015,46(6):17-20. doi: 10.3969/j.issn.1005-2399.2015.06.005

    9. [9]

      PENG C, FANG X C, ZENG R H, GUO R, HAO W Y. Commercial analysis of catalytic hydroprocessing technologies in producing diesel and gasoline by light cycle oil[J]. Catal Today, 2016,276(1):11-18.  

    10. [10]

      HUANG Jue, ZHANG De-xiang, LI Yang-yang, GAO Jin-sheng. Separation, analysis and optimizing utilization of light oil from shenhua coal liquefaction[J]. Petrochem Technol, 2010,39(8):936-940.  

    11. [11]

      HUANG P, ZHANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels, 2015,29(1):86-90. doi: 10.1021/ef502146a

    12. [12]

      TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol, 2015,43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009 

    13. [13]

      NIU M L, SUN X H, GAO R, LI D, CUI W G, LI W H. Effect of dephenolization on low temperature coal tar hydrogenation to produce fuel oil[J]. Energy Fuels, 2016,30(12):10215-10221. doi: 10.1021/acs.energyfuels.6b01985

    14. [14]

      YUAN Y, LI D, ZHANG L N, ZHU Y H, WANG L, LI W H. Development, status, and prospects of coal tar hydrogenation technology[J]. Energy Technol, 2016,4(11):1338-1348. doi: 10.1002/ente.201600184

    15. [15]

      DAI F, GONG M M, LI C S, LI Z X, ZHANG S J. New kinetic model of coal tar hydrogenation process via carbon number component approach[J]. Appl Energy, 2015,137(C):265-272.  

    16. [16]

      MENG Xin-xin, QIU Ze-gang, GUO Xing-mei, LI Zhen-rong, HU Nai-fang, SONG Mao-ning, ZHAO Liang-fu. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol, 2016,44(5):570-578. doi: 10.3969/j.issn.0253-2409.2016.05.009 

    17. [17]

      CHEN K, LIU H, XUE Z X, Li H Y, GUO A J, WANG Z X. Co-carbonization of petroleum residue asphaltenes with maltene fractions:Influence on the structure and reactivity of resultant cokes[J]. J Anal Appl Pyrolysis, 2013,102:131-136. doi: 10.1016/j.jaap.2013.03.005

    18. [18]

      HUANG Peng, ZHANG Xiao-jing, MAO Xue-feng, LI Wei-lin. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. J Fuel Chem Technol, 2016,44(1):37-43. doi: 10.3969/j.issn.0253-2409.2016.01.006 

    19. [19]

      YANG Jing-yi, ZHOU Xiu-huan, CAI Hai-jun, WANG Hong-chen. Separation and indentification of nitrogen compounds in diesel fraction of coal tar and petroleum[J]. Pet Process Petrochem, 2015,46(7):107-113. doi: 10.3969/j.issn.1005-2399.2015.07.043

    20. [20]

      WU Xiu-zhang, SHI Yu-lin, XU Chun-ming. Hydro-upgrading pilot test of direct coal liquefaction effluent[J]. Acta Pet Sin(Pet Process Sect), 2009,25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004

    21. [21]

      SUN Guo-quan, YAO Chun-lei, QUAN Hui, ZHANG Zhi-yin. Development and commercialization of clean fuels production technology from medium and low temperature coal tars[J]. Pet Process Petrochem, 2015,46(8):12-17. doi: 10.3969/j.issn.1005-2399.2015.08.003

    22. [22]

      LI Li-quan. Process Calculation and Technical Analysis of Hydro Cracking Unit[M]. Beijing:China Petrochemical Press, 2009.

    23. [23]

      WANG J, ZHAO S Q, XU C, CHUNG K H. Properties correlations and characterization of athabasca oil sands-derived synthetic crude oil[J]. Pet Sci, 2007,4(3):84-90.  

    24. [24]

      WANG Lei, LI Hui-peng. Petroleum Refining Technology[M]. Beijing:China Petrochemical Press, 2011.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(6)
  • Abstract views(1186)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return