Citation: FENG Xiao-fei, ZHANG Cheng, ZHANG Xiao-pei, LI Sheng-ming, GE Jiang, CHEN Gang. Influence of hydrothermal upgrading on physical and chemical structures and moisture readsorption characteristics of a lignite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 23-29. shu

Influence of hydrothermal upgrading on physical and chemical structures and moisture readsorption characteristics of a lignite

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 20 August 2015
    Revised Date: 27 October 2015

    Fund Project: Independent Innovation Fund of HUST 2013QN082Natural Science Foundation of Hubei Province 2012FFB02602The project was supported by National Natural Science Foundation of China 51006042

Figures(9)

  • Zhaotong lignite from Yunnan province was hydrothermally upgraded at 150-300 ℃, then the changes of surface oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy, and the evolution of pore structure was identified by nitrogen adsorption isotherm. Constant temperature and humidity incubator were used to investigate moisture readsorption characteristics. The results indicate that the main hydrophilic oxygen-containing functional groups (-OH, -COOH, >C=O) decrease and are removed effectively with increase of upgrading temperature. Large changes occur in pore structures of the treated coal, in which the specific surface area and total pore volume increase firstly then decrease with increasing temperature, moreover tar initially generate at 250-300 ℃. Moisture readsorption performance is restrained effectively under the synergy effect of physical and chemical structures, and the moisture readsorption ratio decreases continuously with increase of upgrading temperature. Environment humidity is a key factor affecting moisture readsorption considering storage of the upgraded lignite. Therefore the situation of hydrothermal upgrading at high temperature and storage at low temperature and low humidity could be more advantageous in terms of enhancing efficiency of lignite upgrading.
  • 加载中
    1. [1]

      ZHU Shu-quan. Development status and analysis of lignite quality improvement technology[J]. Clean Coal Technol, 2011,17(1):1-4.  

    2. [2]

      XU Xin, XIONG Zhi-jun. The current application situation of upgrading technology of domestic and international coal[J]. China Coal, 2013,39(12):133-137.  

    3. [3]

      DU Jing-wen, YIN Jia-nan, FAN Li-hua, LIANG Ying-hua. Status of lignite utilization technologies[J]. Clean Coal Technol, 2015,21(1):73-76.  

    4. [4]

      YU Yu-jie, LIU Jian-zhong, WANG Chuan-cheng, HU Ya-xuan, ZHOU Jun-hu, CEN Ke-fa. Status quo of development in dewatering for upgrading low rank coal[J]. Therm Power Gener, 2011,40(9):1-4.  

    5. [5]

      NAKAGAWA H, NAMBA A, BÖHLMANN M, MIURA K. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst[J]. Fuel, 2004,83(6):719-725. doi: 10.1016/j.fuel.2003.09.020

    6. [6]

      MURSITO A T, HIRAJIMA T, SASAKI K. Alkaline hydrothermal de-ashing and desulfurization of low quality coal and its application to hydrogen-rich gas generation[J]. Energy Convers Manage, 2011,52(1):762-769. doi: 10.1016/j.enconman.2010.08.001

    7. [7]

      LIU X, LI B, MIURA K. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model[J]. Fuel Process Technol, 2001,69(1):1-12. doi: 10.1016/S0378-3820(00)00113-2

    8. [8]

      WANG Yi, WANG Zhi-qing. Hydrothermal upgrading of lignite and reclamation of its wastewater by catalytic gasification[J]. Coal Convers, 2012,35(3):28-32.  

    9. [9]

      ZOU Xiang-bo, WANG Zhi-hua, HU Xin, ZHOU Zhi-jun, HUANG Zhen-yu, ZHOU Jun-hu, CEN Ke-fa. Release characteristics of gaseous products during rapid pyrolysis of upgraded lignite[J]. J Combust Sci Technol, 2013,19(3):268-274.  

    10. [10]

      GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Influence of the hydrothermal dewatering on the gasification characteristics of typical chinese lignite[J]. Proc CSEE, 2013,33(32):14-20.  

    11. [11]

      SAKAGUCHI M, LAURSEN K, NAKAGAWA H, MIURA K. Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products[J]. Fuel Process Technol, 2008,89(4):391-396. doi: 10.1016/j.fuproc.2007.11.008

    12. [12]

      OGUNSOLA O I. Thermal upgrading effect on oxygen distribution in lignite[J]. Fuel Process Technol, 1993,34(1):73-81. doi: 10.1016/0378-3820(93)90062-9

    13. [13]

      YU Y, LIU J, WANG R, ZHOU J, CEN K. Effect of hydrothermal dewatering on the slurryability of brown coals[J]. Energy Convers Manage, 2012,57:8-12. doi: 10.1016/j.enconman.2011.11.016

    14. [14]

      CHOI H, THIRUPPATHIRAJA C, KIM S, RHIM Y, LIM J, LEE S. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal[J]. Fuel Process Technol, 2011,92(10):2005-2010. doi: 10.1016/j.fuproc.2011.05.025

    15. [15]

      ZHANG Shu, CHEN Yan-ju, LIU Dan, WANG Lei, MI Jian-xin, WANG Yong-gang. Hydrothermal treatment affected to pore structure and surface property of shengli lignite[J]. Coal Sci Technol, 2013,41(6):117-121.  

    16. [16]

      OHKI A, XIE X, INAKAJIMA T, ITAHARA T, MAEDA S. Change in properties and combustion characteristics of an indonesian Low-Rank coal due to hydrothermal treatment[J]. Coal Prep, 1999,21(1):23-34. doi: 10.1080/07349349908945606

    17. [17]

      MAN C, LIU Y, ZHU X, CHE D. Moisture readsorption performance of air-dried and hydrothermally dewatered lignite[J]. Energy Fuels, 2014,28(8):5023-5030. doi: 10.1021/ef501255n

    18. [18]

      ZHANG J, ZHANG C, QIU Y, CHEN L, TAN P, CHEN G. Evaluation of moisture readsorption and combustion characteristics of a lignite thermally upgraded with the addition of asphalt[J]. Energy Fuels, 2014,28(12):7680-7688. doi: 10.1021/ef5019115

    19. [19]

      TAHMASEBI A, YU J, HAN Y, LI X. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air[J]. Fuel Process Technol, 2012,101:85-93. doi: 10.1016/j.fuproc.2012.04.005

    20. [20]

      ZHANG Jin-ping, ZHANG Cheng, TAN Peng, YANG Xian-jun, SU Hang, CHEN Gang. Influence of oxygen-containing groups on moisture re-adsorption characteristics of upgraded lignite[J]. Proc CSEE, 2014,34(35):6279-6285.  

    21. [21]

      WANG Na, ZHU Shu-quan, YANG Yu-li, WU Peng, ZHANG Heng. Oxygen-containing function groups affected to waterproof of thermal upgraded lignite briquettes[J]. Coal Sci Technol, 2010,38(3):125-128.  

    22. [22]

      IBARRA J, MU OZ E, MOLINER R. FT-IR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996,24(6/7):725-735.  

    23. [23]

      CHEN Y, MASTALERZ M, SCHIMMELMANN A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. Int J Coal Geol, 2012,104:22-33. doi: 10.1016/j.coal.2012.09.001

    24. [24]

      WANG S, TANG Y, SCHOBERT H H, GUO Y N, GAO W, LU X. FT-IR and simultaneous TG/MS/FT-IR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis, 2013,100(6):75-80.  

    25. [25]

      FENG Qing, LI Shi-wu, ZHANG Li. Engineering thermodynamics[M]. Xian: Northwestern Polytechnical University Press, 2006: 577-579.

    26. [26]

      FU P, HU S, XIANG J, SUN L, SU S, WANG J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate[J]. J Anal Appl Pyrolysis, 2012,98:177-183. doi: 10.1016/j.jaap.2012.08.005

  • 加载中
    1. [1]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    2. [2]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    12. [12]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(0)
  • Abstract views(1009)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return