Citation: ZHANG Li-qiang, LI Kai, ZHU Xi-feng. Two-step pyrolysis characteristics of bean stalks[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 534-539. shu

Two-step pyrolysis characteristics of bean stalks

  • Corresponding author: ZHU Xi-feng, xfzhu@ustc.edu.cn
  • Received Date: 21 December 2015
    Revised Date: 22 February 2016

    Fund Project: the Key Research Program of the Chinese Academy of Sciences KGZD-EW-304-3the Major State Basic Research Development Program of China 2013CB228103the Major State Basic Research Development Program of China 973 program

Figures(6)

  • Two-step pyrolysis of soybean stalk was investigated using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results indicate that with the increase of the first-step pyrolysis temperature (t1), the total peak area of the first-step products becomes higher. However, for the second-step, the total peak area decreases gradually with the increase of t1. The products in the first-step pyrolysis have higher contents of acids, ketones and furans when t1 is 400 or 450 ℃. This is because that the products are originated from cellulose and hemicellulose. The content of hydrocarbon products in the second-step is more than 20% when t1 is 450 or 500 ℃. With two-step pyrolysis some products with high content can be obtained in the first or second step, respectively, such as acetic acid, furfural, guaiacol, methylbenzene and benzene etc., thus preliminarily achieving the selective pyrolysis of biomass.
  • 加载中
    1. [1]

      WEI Xin-lai, WANG Zhi, RUAN Ren-xiang, ZHANG Ying. Progress in chemical transformation of lignocellulosic biomass degradation products[J]. Mod Chem Ind, 2010,30(12):26-31.  

    2. [2]

      WANG Zhi. Selective catalytic pyrolysis of biomass for high value-added chemicals[D]. Hefei: University of Science and Technology of China, 2010.

    3. [3]

      CARLSON T R, VISPUTE T P, HUBER G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds[J]. ChemSusChem, 2008,1(5):397-400. doi: 10.1002/(ISSN)1864-564X

    4. [4]

      LI Kai, ZHENG Yan, LONG Tan, ZHU Xi-feng. Study on effect of temperature and time on biomass pyrolysis by Py-GC/MS[J]. J Fuel Chem Technol, 2013,41(7):845-849.  

    5. [5]

      CHANG Sheng, ZHAO Zeng-li, ZHENG An-qing, LI Hai-bin. Step-wise catalytic pyrolysis of fir using pyrolysis-gas chromatography/mass spectrometry[J]. Trans Chin Soc Agric Mach, 2010,41(6):93-97.  

    6. [6]

      HAMMER N L, GARRIDO R A, STARCEVICH J, COE C G, SATRIO J A. Two-step pyrolysis process for producing high quality bio-oils[J]. Ind Eng Chem Res, 2015,54(43):10629-10637. doi: 10.1021/acs.iecr.5b02365

    7. [7]

      HUANG Y B, WEI L, JULSON J, GAO Y, ZHAO X H. Converting pine sawdust to advanced biofuel over HZSM-5 using a two-stage catalytic pyrolysis reactor[J]. J Anal Appl Pyrolysis, 2015,111:148-155. doi: 10.1016/j.jaap.2014.11.019

    8. [8]

      ZHANG Hai-rong, PANG Hao, SHI Jin-zhi, LIAO Bing. TG study on major biomass components and its liquefied residues from pyrolysis[J]. Chem Ind Eng Prog, 2011,30(10):2194-2199.  

    9. [9]

      QU Yan-chao. Low temperature selective pyrolysis of herbage biomass for 4-vinylphenol[D]. Hefei: University of Science and Technology of China, 2013.

    10. [10]

      ZHU Xi-feng. Preparation and Application of Bio-oil[M]. Beijing: Chemical Industry Press, 2013.

    11. [11]

      PATTIYA A, TITILOVE J O, BRIDGWATER A V. Fast pyrolysis of cassava rhizome in the presence of catalysts[J]. J Anal Appl Pyrolysis, 2008,81(1):72-79. doi: 10.1016/j.jaap.2007.09.002

    12. [12]

      LU Qiang, ZHANG Dong, ZHU Xi-feng. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose (Ⅰ) Py-GC/MS experiments[J]. CIESC J, 2010,61(4):1018-1024.  

    13. [13]

      CHEN W H, KUO P C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis[J]. Energy, 2011,36(11):6451-6460. doi: 10.1016/j.energy.2011.09.022

    14. [14]

      YANG Xiao-chu. Study on the characteristics of biomass two-step pyrolysis[D]. Beijing: North China Electric Power University, 2012.

    15. [15]

      EVANS R J, MILNE T A, SOLTYS M N. Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels: Ⅲ Primary pyrolysis of lignin[J]. J Anal Appl Pyrolysis, 1986,9(3):207-236. doi: 10.1016/0165-2370(86)80012-2

    16. [16]

      DARVELL L I, BRINDLEY C, BAXTER X C, JONES J M, WILLIAMS A. Nitrogen in biomass char and its fate during combustion-a model compound approach[J]. Energy Fuels, 2012,26(11):6482-6491.  

    17. [17]

      WU Yi-min, ZHAO Zeng-li, WU Wen-qiang, LI Hai-bin. Step-pyrolysis of biomass using pyrolysis-gas chromatography/mass spectrometry[J]. J Fuel Chem Technol, 2010,38(2):168-173.  

    18. [18]

      ZHAO Shi-xiang, JI Qiang, LI Zhong-hui, WANG Xu-dong. Characteristics and mineralization in soil of apple-derived biochar produced at different temperature[J]. Trans Chin Soc Agric Mach, 2015,46(6):183-192.  

    19. [19]

      ALÉN R, KUOPPALA E, OESCH P. Formation of the main degradation compound groups from wood and its components during pyrolysis[J]. J Anal Appl Pyrolysis, 1996,36(2):137-148. doi: 10.1016/0165-2370(96)00932-1

    20. [20]

      WANG Shu-rong, LUO Zhong-yang. Pyrolysis of Biomass Components[M]. Beijing: Science Press, 2013.

  • 加载中
    1. [1]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

Metrics
  • PDF Downloads(0)
  • Abstract views(1458)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return