Citation: TAO Jia-yi, ZHANG Jian-li, FAN Su-bing, MA Qing-xiang, GAO Xin-hua, ZHAO Tian-sheng. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1105-1111. shu

Effects of boron modification on the activity of HZSM-5 toward MTP

  • Corresponding author: ZHAO Tian-sheng, zhaots@nxu.edu.cn
  • Received Date: 30 April 2020
    Revised Date: 7 July 2020

    Fund Project: The project was supported by East-West Cooperation Project, Key R & D Plan of Nignxia (2017BY063) and National Natural Science Foundation of China (21563024)National Natural Science Foundation of China 21563024East-West Cooperation Project, Key R & D Plan of Nignxia 2017BY063

Figures(4)

  • BHZSM-5 zeolite was synthesized using one-step hydrothermal crystallization by changing SiO2/Al2O3 (100 and 200) with B2O3/Al2O3=1. The catalytic activity for methanol to propylene (MTP) was studied. Boron modification lead to increased propylene selectivity and improved stability. Boron modification reduced the amount of the strong Brønsted (B) acid sites. Subjected to hydrothermal treatment at 480 ℃, BHZSM-5 remained 50% of the amount of the strong B acid sites, higher than that of HZSM-5, showing enhanced hydrothermal stability. The distribution of the framework Al also changed. The Al located in the straight and the sinusoidal channels of the ZSM-5 crystal was stable whereas those at the channel intersections was easy to be removed, favoring the MTP activity via the olefin cycle mechanism. As the hydrothermal treatment velocity was increased from 1 h-1 to 9 h-1, the B acid sites amount of the BHZSM-5 further decreased and more Al at the intersections was removed.
  • 加载中
    1. [1]

      TARACH K A, MARTINEZ-TRIGUERO J, REY F, GÓRA-MAREK K. Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5[J]. J Catal, 2016,339:256-269. doi: 10.1016/j.jcat.2016.04.023

    2. [2]

      BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Deposition and characteristics of coke over a H-ZSM-5 zeolite-based catalyst in the MTG process[J]. Ind Eng Chem Res, 1996,35:3991-3998. doi: 10.1021/ie950462z

    3. [3]

      WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Effect of Si/Al ratio in ZSM-5 on the selectivity of products for methanol conversion to propylene[J]. Chem React Eng Technol, 2007,23(5):385-390.  

    4. [4]

      ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun, 2006,7(9):647-650. doi: 10.1016/j.catcom.2005.11.009

    5. [5]

      LIU Wen-li. Study on the acidity adjustment of HZSM-5[D]. Yinchuan: Ningxia University, 2017.

    6. [6]

      PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J N, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. Catal Today, 2018,303:64-70. doi: 10.1016/j.cattod.2017.07.022

    7. [7]

      BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TATSUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J Catal, 2017,353:1-10. doi: 10.1016/j.jcat.2017.06.026

    8. [8]

      HOLZINGER J, BEATO P, LUNDEGAARD L F, SKIBSTED J. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment[J]. J Phys Chem C, 2018,122(27):15595-15613. doi: 10.1021/acs.jpcc.8b05277

    9. [9]

      SANHOOB M A, MURAZA S, SHAFEI E N, YOKOI T, CHOI K H. The steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite[J]. Appl Catal B. Environ, 2017,210:432-443. doi: 10.1016/j.apcatb.2017.04.001

    10. [10]

      YANG Y S, SUN C, DU J M, YUE Y H, HUA W M, ZHANG C L, SHEN W, XU H L. The synthesis of endurable B-Al-ZSM-5 catalyst with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012,24:44-47. doi: 10.1016/j.catcom.2012.03.013

    11. [11]

      LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selectively introducing acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal, 2018,8(8):7688-7697. doi: 10.1021/acscatal.8b02112

    12. [12]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141:347-354. doi: 10.1006/jcat.1993.1145

    13. [13]

      HU Z J, ZHANG H B, WANG L, ZHANG H X, ZHANG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol, 2014,4:2981-2985.  

    14. [14]

      DING C H, WANG X S, GUO X W, ZHANG S G. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J]. Catal Commun, 2007,9:487-493.  

    15. [15]

      ZHOU Zhen-lei, LI Zhou, WANG Bo, PENG Wei-cai, LI Jian-qing, WU Jin-hu. Hydrothermal treatment of ZSM-5 and its application in syngas via DME[J]. J Fuel Chem Technol, 2013,41(11):1349-1355.  

    16. [16]

      KANELLOPOULOS J, YNGER A, SCHWIEGER W, FREUDE D. Catalytic and multinuclear MAS NMR studies of a thermally treated zeolite ZSM-5[J]. J Catal, 2006,237:416-425. doi: 10.1016/j.jcat.2005.11.030

    17. [17]

      CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordination in zeolite mordenite by27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem, 2000,2:281-285.  

    18. [18]

      YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015,119:15303-15315. doi: 10.1021/acs.jpcc.5b03289

    19. [19]

      FU T J, MA Z, WANG Y J, SHAO J, MA Q, ZHANG C M, CUI L P, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesis nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol, 2019,194106122. doi: 10.1016/j.fuproc.2019.106122

    20. [20]

      LIU H, WANG H, XING A H, CHENG J H. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J]. J Phys Chem C, 2015,119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289

    21. [21]

      ERICHSEN M W, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal Today, 2013,215:216-223. doi: 10.1016/j.cattod.2013.03.017

    22. [22]

      LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016,6:7311-7325. doi: 10.1021/acscatal.6b01771

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Heng GaoJiwei ZhangPeng ZhanXinyong Liu . AL5E: A breakthrough in broad-spectrum coronavirus inactivation through structure-guided design. Chinese Chemical Letters, 2025, 36(7): 111221-. doi: 10.1016/j.cclet.2025.111221

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Zhenguo ZhangLanyang LiXinlong ZongYongheng LvShuanglei LiuLiang JiXuefei ZhaoZhenhua JiaTeck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504

    12. [12]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    13. [13]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    14. [14]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    18. [18]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

Metrics
  • PDF Downloads(2)
  • Abstract views(1021)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return