Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization
- Corresponding author: ZENG Ling-you, zengly1990@126.com
Citation:
ZHAO Rui-yu, CAO Dong-wei, ZENG Ling-you, LIANG Juan, LIU Chen-guang. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(5): 564-569.
BOUWENS S M A M, VANZON F B M, VANDIJK M P, VANDERKRAAN A M, DEBEER V H G, VANVEEN J A R, KONINGSBERGER D C. On the structural differences between alumina-supported comos type Ⅰ and alumina-, silica-, and carbon-supported comos type Ⅱ phases studied by XAFS, MES, and XPS[J]. J Catal, 1994,146(2)375. doi: 10.1006/jcat.1994.1076
YIN Hai-liang, ZHOU Tong-na, LIU Chen-guang. Effect of phosphorus on the interaction between active component and support of NiMo/Al2O3catalyst[J]. Pet Process Petrochem, 2012,7:32-36.
LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN C, HELVEG S. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007,249:220-233. doi: 10.1016/j.jcat.2007.04.013
DIGNE M, SAUTET P, RAYBAUD P. Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces[J]. J Catal, 2004,226(1):54-68. doi: 10.1016/j.jcat.2004.04.020
LIU X. DRIFTS study of surface of γ-alumina and its dehydroxylation[J]. J Phys Chem C, 2008,112:5066-5073. doi: 10.1021/jp711901s
OSTROMECKI M M, BURCHAM L J, WACHS I E, RAMANI N, EKERDT J E. The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina:Ⅰ.Ambient conditions[J]. J Mol Catal A: Chem, 1998,132:43-57. doi: 10.1016/S1381-1169(97)00226-4
ZHAO C, YU Y, JENTYS A, LERCHER J A. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation[J]. Appl Catal B: Environ, 2013,132:282-292.
BORELLO E, CIMINO A, GHIOTTI G, JACONO M L, SCHIAVELLO M, ZECCHINA A. Surface configurations and infra-red studies on nickel oxide supported on η-and γ-Al2O3[J]. Discuss Faraday Soc, 1971,52:149-160. doi: 10.1039/DF9715200149
SUN Y, YUAN L, MA S, HAN Y, ZHAO L, WANG W. Improved catalytic activity and stability of mesostructured sulfated zirconia by Al promoter[J]. Appl Catal A: Gen, 2004,268(1/2):17-24.
MORTERRA C, COLUCCIA S, CHIRINO A, BOCCUZZI F. Infrared study of the adsorption of pyridine on α-Al2O3[J]. J Catal, 1978,54(3):348-364. doi: 10.1016/0021-9517(78)90083-0
HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235. doi: 10.1006/jcat.2000.3158
SUN M, KOOYMAN P J, PRINS R. A high-resolution transmission electron microscopy study of the influence of fluorine on the morphology and dispersion of WS2 in sulfided W/Al2O3 and NiW/Al2O3 catalysts[J]. J Catal, 2002,206(2):368-375. doi: 10.1006/jcat.2001.3503
ALONSO G, BERHAULT G, AGUILAR A, COLLINS V, ORNELAS C, FUENTES S, CHIANELLI R R. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates[J]. J Catal, 2002,208(2):359-369. doi: 10.1006/jcat.2002.3553
NIKULSHIN P A, SALNIKOV V A, MOZHAEV A V, MINAEV P P, KOGAN V M, PIMERZIN A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co (Ni) Mo catalysts in HDS and HYD reactions[J]. J Catal, 2014,309:386-396. doi: 10.1016/j.jcat.2013.10.020
TUXEN A, KIBSGAARD J, GØBEL H. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters[J]. ACS nano, 2010,4(8):4677-4682. doi: 10.1021/nn1011013
TUXEN A K, FÜCHTBAUER H G, TEMEL B, HINNEMANN B, TOPSØE H, KNUDSEN K, BESENBACHER F, LAURITSEN J V. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. J Catal, 2012,295:146-154. doi: 10.1016/j.jcat.2012.08.004
BESENBACHER F, BRORSON M, CLAUSEN B S, HELVEG S, HINNEMANN B, KIBSGAARD J, LAURITSEN J V. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catal Today, 2008,130(1):86-96. doi: 10.1016/j.cattod.2007.08.009
HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, ET A L. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235. doi: 10.1006/jcat.2000.3158
SHIMADA H. Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance[J]. Catal Today, 2003,86(1):17-29.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Xinghai Liu , Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Xiaoxuan Yu , Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%
●: MoS2; ◆: γ-Al2O3
a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%
a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%
a: 0; b: 1.25%; c: 2.50%; d: 3.75%; e: 5.00%
(a): 0; (b): 1.25%; (c): 2.50 %; (d): 3.75%; (e): 5.00%