Citation: ZHAO Rui-yu, CAO Dong-wei, ZENG Ling-you, LIANG Juan, LIU Chen-guang. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 564-569. shu

Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization

  • Corresponding author: ZENG Ling-you, zengly1990@126.com
  • Received Date: 25 December 2015
    Revised Date: 25 January 2016

    Fund Project: the Catalysts Development and Industrial Application Research Program of CNPC 1001A050104the National Natural Science Foundation of China U1162203the National Natural Science Foundation of China 21176258

Figures(6)

  • A series of NiMo/γ-Al2O3 catalysts with different NiO loadings were prepared and characterized by XRD, BET, 27Al-NMR, Py-IR and HRTEM. The activity of these NiMo/γ-Al2O3 catalysts in the hydrodesulphurization (HDS) of dibenzothiophene (DBT) was evaluated in a high pressure micro reactor; the interaction between Ni promoter and γ-Al2O3 support as well as its effect on the nanostructure of active MoS2 phase and HDS performance was then investigated. The results indicate that Ni promoter prefers to interact with the tetra-coordinated unsaturated aluminum sites on the support surface. With the increase of NiO loading, the average number of stacking layers for the MoS2 clusters in the sulfided NiMo/γ-Al2O3 catalysts is increased at the expense of the average length. As the slim MoS2 clusters are more active for the HDS of DBT, the addition of Ni promoter is then effective to enhance the catalytic activity of NiMo/γ-Al2O3 in HDS, but may lead to a slight decrease in the hydrogenation selectivity.
  • 加载中
    1. [1]

      BOUWENS S M A M, VANZON F B M, VANDIJK M P, VANDERKRAAN A M, DEBEER V H G, VANVEEN J A R, KONINGSBERGER D C. On the structural differences between alumina-supported comos type Ⅰ and alumina-, silica-, and carbon-supported comos type Ⅱ phases studied by XAFS, MES, and XPS[J]. J Catal, 1994,146(2)375. doi: 10.1006/jcat.1994.1076

    2. [2]

      YIN Hai-liang, ZHOU Tong-na, LIU Chen-guang. Effect of phosphorus on the interaction between active component and support of NiMo/Al2O3catalyst[J]. Pet Process Petrochem, 2012,7:32-36.  

    3. [3]

      LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN C, HELVEG S. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007,249:220-233. doi: 10.1016/j.jcat.2007.04.013

    4. [4]

      DIGNE M, SAUTET P, RAYBAUD P. Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces[J]. J Catal, 2004,226(1):54-68. doi: 10.1016/j.jcat.2004.04.020

    5. [5]

      LIU X. DRIFTS study of surface of γ-alumina and its dehydroxylation[J]. J Phys Chem C, 2008,112:5066-5073. doi: 10.1021/jp711901s

    6. [6]

      OSTROMECKI M M, BURCHAM L J, WACHS I E, RAMANI N, EKERDT J E. The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina:Ⅰ.Ambient conditions[J]. J Mol Catal A: Chem, 1998,132:43-57. doi: 10.1016/S1381-1169(97)00226-4

    7. [7]

      ZHAO C, YU Y, JENTYS A, LERCHER J A. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation[J]. Appl Catal B: Environ, 2013,132:282-292.  

    8. [8]

      BORELLO E, CIMINO A, GHIOTTI G, JACONO M L, SCHIAVELLO M, ZECCHINA A. Surface configurations and infra-red studies on nickel oxide supported on η-and γ-Al2O3[J]. Discuss Faraday Soc, 1971,52:149-160. doi: 10.1039/DF9715200149

    9. [9]

      SUN Y, YUAN L, MA S, HAN Y, ZHAO L, WANG W. Improved catalytic activity and stability of mesostructured sulfated zirconia by Al promoter[J]. Appl Catal A: Gen, 2004,268(1/2):17-24.  

    10. [10]

      MORTERRA C, COLUCCIA S, CHIRINO A, BOCCUZZI F. Infrared study of the adsorption of pyridine on α-Al2O3[J]. J Catal, 1978,54(3):348-364. doi: 10.1016/0021-9517(78)90083-0

    11. [11]

      HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235. doi: 10.1006/jcat.2000.3158

    12. [12]

      SUN M, KOOYMAN P J, PRINS R. A high-resolution transmission electron microscopy study of the influence of fluorine on the morphology and dispersion of WS2 in sulfided W/Al2O3 and NiW/Al2O3 catalysts[J]. J Catal, 2002,206(2):368-375. doi: 10.1006/jcat.2001.3503

    13. [13]

      ALONSO G, BERHAULT G, AGUILAR A, COLLINS V, ORNELAS C, FUENTES S, CHIANELLI R R. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates[J]. J Catal, 2002,208(2):359-369. doi: 10.1006/jcat.2002.3553

    14. [14]

      NIKULSHIN P A, SALNIKOV V A, MOZHAEV A V, MINAEV P P, KOGAN V M, PIMERZIN A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co (Ni) Mo catalysts in HDS and HYD reactions[J]. J Catal, 2014,309:386-396. doi: 10.1016/j.jcat.2013.10.020

    15. [15]

      TUXEN A, KIBSGAARD J, GØBEL H. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters[J]. ACS nano, 2010,4(8):4677-4682. doi: 10.1021/nn1011013

    16. [16]

      TUXEN A K, FÜCHTBAUER H G, TEMEL B, HINNEMANN B, TOPSØE H, KNUDSEN K, BESENBACHER F, LAURITSEN J V. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. J Catal, 2012,295:146-154. doi: 10.1016/j.jcat.2012.08.004

    17. [17]

      BESENBACHER F, BRORSON M, CLAUSEN B S, HELVEG S, HINNEMANN B, KIBSGAARD J, LAURITSEN J V. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catal Today, 2008,130(1):86-96. doi: 10.1016/j.cattod.2007.08.009

    18. [18]

      HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, ET A L. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235. doi: 10.1006/jcat.2000.3158

    19. [19]

      SHIMADA H. Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance[J]. Catal Today, 2003,86(1):17-29.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

Metrics
  • PDF Downloads(8)
  • Abstract views(1829)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return