Citation: JING Jie-ying, YANG Zhi-fen, WANG Jiu-zhan, LIU Dao-cheng, FENG Jie, LI Wen-ying. Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 842-851. shu

Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst

  • Corresponding author: JING Jie-ying, jingjieying@tyut.edu.cn LI Wen-ying, ying@tyut.edu.cn
  • Received Date: 5 June 2020
    Revised Date: 3 July 2020

    Fund Project: National Key Research and Development Plan Projects of China 2016YFB0600305National Natural Science Foundation of China 21978190National Natural Science Foundation of China U1610221The project was supported by National Key Research and Development Plan Projects of China (2016YFB0600305), National Natural Science Foundation of China (21978190, U1610221)

Figures(8)

  • Ni2P/SiO2 catalysts were prepared by temperature-programmed reduction method and hypophosphite disproportionation method to investigate their naphthalene hydrogenation performance. The prepared catalysts were characterized by ICP-OES, X-ray diffraction, H2 temperature-programmed reduction, N2 adsorption-desorption method and transmission electron microscopy, etc. Results showed that Ni2P/SiO2 catalyst with pure Ni2P crystal phase could be successfully prepared by the temperature-programmed reduction method and hypophosphite disproportionation method. When the naphthalene hydrogenation reaction was performed at 340℃, 4 MPa, H2/oil volume ratio of 600, and a weight hourly space velocity (WHSV) of 20.8 h-1, Ni2P/SiO2 catalyst prepared by the temperature-programmed reduction method possessed superior hydrogenation activity. This result was ascribed to the advantages of temperature-programmed reduction method. It not only installed the higher number of Ni2P species (CO adsorption amount 21.6 μmol/g) over SiO2, but also obtained more weak acid sites on the catalyst surface, which promoted the adsorption of aromatic hydrocarbons and subsequently resulted in the higher hydrogenation activity. Furthermore, when the temperature-programmed reduction method was used to prepare Ni2P/SiO2 catalyst, the lower Ni/P molar ratio was more beneficial to enhance the naphthalene hydrogenation activity of the as-prepared catalyst.
  • 加载中
    1. [1]

      CORMA A, MARTÍNEZ A, MARTÍNEZ-SORIA V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts[J]. J Catal, 1997,169(2):480-489.  

    2. [2]

      STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis:A review[J]. Catal Rev, 2006,36(1):75-123.  

    3. [3]

      XIA Liang-yan, XIA Zhi-xiang, FANG Meng-xiang, TANG Wei, WANG Qin-hui, LUO Zhong-yang. Hydrogenation saturation of aromatic compounds (naphthalene) in coal tar[J]. J Zhejiang Univ (Eng Sci)), 2015,49(3):578-584.  

    4. [4]

      TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol, 2015,43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009 

    5. [5]

      HE T, WANG Y, MIAO P, LI J, WU J, FANG Y. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur[J]. Fuel, 2013,106:365-371. doi: 10.1016/j.fuel.2012.12.025

    6. [6]

      LI He, YIN Chang-long, ZHAO Xue-ping, LI Xiu-zheng, LIU Yun-ji, LIU Chen-guang. Progresses in hydrogenation or dehydrogenation of naphthalene, tetralin and decalin, and the catalysts[J]. Petrochem Technol, 2014,23(8):971-979. doi: 10.3969/j.issn.1000-8144.2014.08.020

    7. [7]

      LIU D, WANG A, LIU C, PRINS R. Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources[J]. Catal Commun, 2016,77:13-17. doi: 10.1016/j.catcom.2016.01.008

    8. [8]

      YUN G, GUAN Q, LI W. The synthesis and mechanistic studies of a highly active nickel phosphide catalyst for naphthalene hydrodearomatization[J]. RSC Adv, 2017,7(14):8677-8687. doi: 10.1039/C7RA00250E

    9. [9]

      YANG Y, LI J, LV G, ZHANG L. Novel method to synthesize Ni2P/SBA-15 adsorbents for the adsorptive desulfurization of model diesel fuel[J]. J Alloy Compd, 2018,745:467-476. doi: 10.1016/j.jallcom.2018.02.156

    10. [10]

      D'AQUINO A I, DANFORTH S J, CLINKINGBEARD T R, ILIC B, PULLAN L, REYNOLDS M A, MURRAY B D, BUSSELL M E. Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors[J]. J Catal, 2016,335:204-214. doi: 10.1016/j.jcat.2015.12.006

    11. [11]

      LI X, FENG J, GUO J, WANG A, PRINS R, DUAN X, CHEN Y. Preparation of Ni2P/Al2O3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio[J]. J Catal, 2016,334:116-119. doi: 10.1016/j.jcat.2015.11.007

    12. [12]

      LI J, CHAI Y, LIU B, WU Y, LI X, TANG Z, LIU Y, LIU C. The catalytic performance of Ni2P/Al2O3 catalyst in comparison with Ni/Al2O3 catalyst in dehydrogenation of cyclohexane[J]. Appl Catal A:Gen, 2014,469:434-441. doi: 10.1016/j.apcata.2013.09.047

    13. [13]

      SONG H, DAI M, GUO Y T, ZHANG Y J. Preparation of composite TiO2-Al2O3 supported nickel phosphide hydrotreating catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Fuel Process Technol, 2012,96:228-236. doi: 10.1016/j.fuproc.2012.01.001

    14. [14]

      WANG S, WANG K, WANG X. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance[J]. Appl Surf Sci, 2016,386:442-450. doi: 10.1016/j.apsusc.2016.06.055

    15. [15]

      LAN X, HENSEN E J M, WEBER T. Silica-supported Ni2P:Effect of preparation conditions on structure and catalytic performance in thiophene hydrodesulfurization (HDS)[J]. Catal Today, 2017,292:121-132. doi: 10.1016/j.cattod.2016.12.040

    16. [16]

      ZHANG X, ZHANG Q, ZHAO A, GUAN J, HE D, HU H, LIANG C. Naphthalene hydrogenation over silica supported nickel phosphide in the absence and presence of N-containing compounds[J]. Energy Fuels, 2010,24(7):3796-3803.  

    17. [17]

      H DOIRE C E, LOUIS C, DAVIDSON A, BREYSSE M, MAUG F, VRINAT M, H DOIRE C E, LOUIS C, DAVIDSON A, BREYSSE M. Support effect in hydrotreating catalysts:Hydrogenation properties of molybdenum sulfide supported on β-zeolites of various acidities[J]. J Catal, 2003,220(2):433-441.  

    18. [18]

      OYAMA S T, WANG X, LEE Y K, CHUN W J. Active phase of Ni2P/SiO2 in hydroprocessing reactions[J]. J Catal, 2004,221(2):263-273.  

    19. [19]

      HUA S, MIN D, SONG H, XIA W, XU X. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursor of ammonium hypophosphite and nickel chloride at low temperature[J]. Vacuum, 2013,462-463(27):247-255.  

    20. [20]

      LIU D, WANG A, LIU C. Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources[J]. Catal Commun, 2016,77(5):13-17.  

    21. [21]

      LIU D, WANG A, LIU C, PRINS R. Ni2P/Al2O3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite[J]. Catal Today, 2017,292(1):133-142.  

    22. [22]

      CHO K S, SEO H-R, LEE Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization[J]. Catal Commun, 2011,12(6):0-474.  

    23. [23]

      XIE Y, SU H L, QIAN X F, X .M. A mild one-step solvothermal route to metal phosphides (metal=Co, Ni, Cu)[J]. J Solid State Chem, 2000,149(1):88-91.  

    24. [24]

      ZHANG Zi-yi. Preparation of Ni2P/Ce-Al2O3 catalyst and its saturated hydrogenation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2018. 

    25. [25]

      QIE Zhi-qiang. Low temperature synthesis of Ni2P/Al2O3 catalyst and its hydrogenation saturation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2019.

    26. [26]

      QIE Zhi-qiang, ZHANG Zi-yi, JING Jie-ying, YANG Zhi-fen, FENG Jie, LI Wen-ying. Effect of Ni2P loading on the structure and naphthalene hydrogenation performance of Ni2P/Ce-Al2O3 catalyst[J]. J Fuel Chem Technol, 2019,47(6):718-724. doi: 10.3969/j.issn.0253-2409.2019.06.009 

    27. [27]

      OYAMA S T, WANG X, LEE Y K, BANDO K, REQUEJO F G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002,210(1):207-217.  

    28. [28]

      SAWHILL S J, LAYMAN K A, WYK D R V, ENGELHARD M H, BUSSELL M E. Thiophene hydrodesulfurization over nickel phosphide catalysts:Effect of the precursor composition and support[J]. J Catal, 2005,231(2):300-313.  

    29. [29]

      HUO J, JING J, LI W. Reduction time effect on structure and performance of Ni-Co/MgO catalyst for carbon dioxide reforming of methane[J]. Int J Hydrogen Energy, 2014,39(36):21015-21023. doi: 10.1016/j.ijhydene.2014.10.086

    30. [30]

      OYAMA S T, GOTT T, ZHAO H, LEE Y-K. Transition metal phosphide hydroprocessing catalysts:A review[J]. Catal. Today, 2009,143(1/2):94-107.  

    31. [31]

      ZHU T, SONG H, DAI X, SONG H. Preparation of Ni2P/Al-SBA-15 catalyst and its performance for benzofuran hydrodeoxygenation[J]. Chin J Chem Eng, 2017,25:1784-1790. doi: 10.1016/j.cjche.2017.03.027

    32. [32]

      NARANOV E R, SADOVNIKOV A A, MAXIMOV A L. Development of micro-mesoporous materials with lamellar structure as the support of NiW catalysts[J]. Microporous Mesoporous Mater, 2018,263:150-157. doi: 10.1016/j.micromeso.2017.12.021

    33. [33]

      SONG H, DAI M, SONG H, WAN X, XU X. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursor of ammonium hypophosphite and nickel chloride at low temperature[J]. Appl Catal A:Gen, 2013,462-463:247-255. doi: 10.1016/j.apcata.2013.05.015

    34. [34]

      SONG H, WANG J, WANG Z, SONG H, LI F, JIN Z. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst[J]. J Catal, 2014,311:257-265. doi: 10.1016/j.jcat.2013.11.021

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    3. [3]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    14. [14]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    15. [15]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    16. [16]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

Metrics
  • PDF Downloads(6)
  • Abstract views(868)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return