Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons
- Corresponding author: WANG Jie, jwang2006@ecust.edu.cn
Citation:
ZHENG Nan, SHI Ji-long, WANG Jie. Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(4): 414-423.
WANG Chang, LI Dan, HE Qin-lan, WANG Gang, SONG Yang, LI Gui-ju. Pyrolysis characteristics of pine biomass in a powder-particle fluidized bed[J]. J Fuel Chem Technol, 2012,40(2):156-163. doi: 10.3969/j.issn.0253-2409.2012.02.005
BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012,38:68-94. doi: 10.1016/j.biombioe.2011.01.048
HEO H S, PARK H J, PARK Y K, RYU C, SUH D J, SUH Y W, YIM J H, KIM S S. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed[J]. Bioresour Technol, 2010,101:591-596.
LI Di, LI Pan, WANG Xian-hua, SHAO Jing-ai, YANG Hai-ping, CHEN Han-ping. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. J Fuel Chem Technol, 2016,44(5):540-547. doi: 10.3969/j.issn.0253-2409.2016.05.005
ZHANG Xiu-mei, CHEN Yi-guan, MENG Xiang-mei, LI Xin-yu. Production of hydrogen-rich gas from biomass by catalytic pyrolysis[J]. J Fuel Chem Technol, 2004,32(4):446-449. doi: 10.3969/j.issn.0253-2409.2004.04.012
WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem, 2014,16:727-735. doi: 10.1039/C3GC41288A
KARANJKAR P U, COOLMAN R J, HUBER G W, BLATNIK M T, ALMALKIE S, KOPS S M D B, MOUNTZIARIS T J, CONNER W C. Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor[J]. Am Inst Chem Eng, 2014,60:1320-1335. doi: 10.1002/aic.14376
WANG Y M, WANG J. Multifaceted effects of HZSM-5(proton-exchanged zeolite socony mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor[J]. Bioresour Technol, 2016,214:700-710. doi: 10.1016/j.biortech.2016.05.027
CHANDLER D S, RESENDE F L P. Comparison between catalytic fast pyrolysis and catalytic fast hydropyrolysis for the production of liquid fuels in a fluidized bed reactor[J]. Energy Fuels, 2019,33:3199-3209. doi: 10.1021/acs.energyfuels.8b03782
WANG K, XU Y, DUAN P, WANG F, XU Z X. Thermo-chemical conversion of scrap tire waste to produce gasoline fuel[J]. Waste Manage, 2019,86:1-12. doi: 10.1016/j.wasman.2019.01.024
JAN O, MARCHAND R, ANJOS L C A, SEUFITELLI G V S, NIKOLLA E, RESENDE F L P. Hydropyrolysis of Lignin Using Pd/HZSM-5[J]. Energy Fuels, 2015,29:1793-1800. doi: 10.1021/ef502779s
THANGALAZHY-GOPAKUMAR S, ADHIKARI S, GUPTA R B, TU M, TAYLOR S. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments[J]. Bioresour Technol, 2011,102:6742-6749. doi: 10.1016/j.biortech.2011.03.104
MEESUK S, CAO J P, SATO K, OGAWA Y, TAKARADA T. The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst[J]. J Anal Appl Pyrolysis, 2012,94:238-245. doi: 10.1016/j.jaap.2011.12.011
MEESUK S, CAO J-P, SATO K, OGAWA Y, TAKARADA T. Study of catalytic hydropyrolysis of rice husk under nickel-loaded brown coal char[J]. Energy Fuels, 2011,25:5438-5443. doi: 10.1021/ef201266b
ZHENG N, WANG J. Distinctly different performances of two iron-doped charcoals in catalytic hydrocracking of pine wood hydropyrolysis vapor to methane or upgraded bio-oil[J]. Energy Fuels, 2020,34:546-556. doi: 10.1021/acs.energyfuels.9b03452
ZHENG N, ZHANG J, WANG J. Parametric study of two-stage hydropyrolysis of lignocellulosic biomass for production of gaseous and light aromatic hydrocarbons[J]. Bioresour Technol, 2017,244:142-150. doi: 10.1016/j.biortech.2017.07.103
MARKER T L, FELIX L G, LINCK M B, ROBERTS M J. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 1:proof of principle testing[J]. Am Inst Chem Eng, 2012,31:191-199.
MARKER T L, FELIX L G, LINCK M B, ROBERTS M J, ORTIZ-TORAL P, WANGEROW J. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 2:Continuous testing[J]. Am Inst Chem Eng, 2013,33:762-768.
LUO G, RESENDE F L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees[J]. Fuel, 2016,166:367-375. doi: 10.1016/j.fuel.2015.10.126
LI B Q, COLETTE B D, RENE C. Catalytic hydropyrolysis by impregnated sulphided Mo catalyst[J]. Fuel, 1991,70:254-257. doi: 10.1016/0016-2361(91)90161-3
LI Wen, LI Bao-qing, SUN Cheng-gong, WEI Chi-wei, CAO Bian-ying. Study on pyrolysis and hydropyrolysis of biomass and copyrolysis between biomass and coal[J]. J Fuel Chem Technol, 1996,24(4):341-347.
MEIER D, BERNS J, GRIINWALD C, FAIX O. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of organocell lignin[J]. J Anal Appl Pyrolysis, 1993,25:335-347. doi: 10.1016/0165-2370(93)80053-3
DAYTON D C, HLEBAK J, CARPENTER J R, WANG K, MANTE O D, PETERS J E. Biomass hydropyrolysis in a fluidized bed reactor[J]. Energy Fuels, 2016,30:4879-4887. doi: 10.1021/acs.energyfuels.6b00373
YANG Jian-li, LI Yun-mei, YAN Rui-ping, CUI Hong, LIU Zhen-yu, WANG Zhe. Catalytic hydrogenation of YanZhou coal and characterization of the heavy products[J]. Coal Convers, 1998,21(2):63-67.
STUMMANN M Z, HANSEN A B, HANSEN L P, DAVIDSEN B, RASMUSSEN S B, WIWEL P, GABRIELSEN J, JENSEN P A, JENSEN A D, HØJ M. Catalytic hydropyrolysis of biomass using molybdenum sulfide based catalyst effect of promoters[J]. Energy Fuels, 2019,33:1302-1313. doi: 10.1021/acs.energyfuels.8b04191
GAMLIEL D P, WILCOX L, VALLA J A. The effects of catalyst properties on the conversion of biomass via catalytic fast hydropyrolysis[J]. Energy Fuels, 2017,31:679-687. doi: 10.1021/acs.energyfuels.6b02781
VENKATAKRISHNAN V K, DELGASS W N, RIBEIRO F H, AGRAWAL R. Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation[J]. Green Chem, 2015,17:178-183. doi: 10.1039/C4GC01746C
CHANG Z, DUAN P, XU Y. Catalytic hydropyrolysis of microalgae:Influence of operating variables on the formation and composition of bio-oil[J]. Bioresour Technol, 2015,184:349-354. doi: 10.1016/j.biortech.2014.08.014
VENKATAKRISHNAN V K, DEGENSTEIN J C, SMELTZ A D, DELGASS W N, AGRAWAL R, RIBEIRO F H. High-pressure fast-pyrolysis, fast-hydropyrolysis and catalytic hydrodeoxygenation of cellulose:Production of liquid fuel from biomass[J]. Green Chem, 2014,16:792-802. doi: 10.1039/c3gc41558a
MELLIGAN F, HAYES M H B, KWAPINSKI W, LEAHY J J. A study of hydrogen pressure during hydropyrolysis of Miscanthus x giganteus and online catalytic vapour upgrading with Ni on ZSM-5[J]. J Anal Appl Pyrolysis, 2013,103:369-377. doi: 10.1016/j.jaap.2013.01.005
MELLIGAN F, HAYES M H B, KWAPINSKI W, LEAHY J J. Hydro-pyrolysis of biomass and online catalytic vapor upgrading with Ni-ZSM-5 and Ni-MCM-41[J]. Energy Fuels, 2012,26:6080-6090. doi: 10.1021/ef301244h
LI L Y, TAKARADA T. Conversion of hot coke oven gas into light fuel gas over Ni/Al2O3 Catalyst[J]. J Chem Eng Jpn, 2006,39:461-468. doi: 10.1252/jcej.39.461
GAMLIEL D P, BOLLAS G M, VALLA J A. Bifunctional Ni-ZSM-5 catalysts for the pyrolysis and hydropyrolysis of biomass[J]. Energy Technol, 2017,5:172-182. doi: 10.1002/ente.201600136
DIETRICH M, RONALD A, OSKAR F. Catalytic hydropyrolysis of lignin:Influence of reaction conditions on the formation and composition of liquid products[J]. Bioresour Technol, 1992,40:171-177. doi: 10.1016/0960-8524(92)90205-C
ZHANG J, ZHENG N, WANG J. Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures[J]. Appl Energy, 2016,173:438-447. doi: 10.1016/j.apenergy.2016.04.034
ZHANG J, ZHENG N, WANG J. Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis[J]. Bioresour Technol, 2018,268:445-453. doi: 10.1016/j.biortech.2018.08.018
YAN H B, MAO F, WANG J. Thermogravimetric-mass spectrometric characterization of thermal decomposition of lignite with attention to the evolutions of small molecular weight oxygenates[J]. J Anal Appl Pyrolysis, 2020,146104781. doi: 10.1016/j.jaap.2020.104781
JIANG Y W, YAN H B, GUO Q H, WANG F C, WANG J. Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char[J]. Fuel Process Technol, 2019,191:1-10. doi: 10.1016/j.fuproc.2019.03.017
ZHONG M, ZHAO Y, ZHAI J R, JIN J L, HU H Q, BAI Z Q, LI W. Effects of nickel additives with different anions on the structure and pyrolysis behavior of Hefeng coal[J]. Fuel Process Technol, 2019,193:273-281. doi: 10.1016/j.fuproc.2019.05.030
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Zhonghan Xu , Yuejia Li , Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075
Qianqian ZHU , Lihui XU , Hong PAN , Chengjian YAO , Hong ZHAO , Nan MA , Xiaolin SHI , Zihan SHEN , Weijun ZHANG , Zhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
1: H2 gas cylinders; 2: pressure regulators; 3: dehumidifier; 4: mass flow controllers; 5: check valves; 6: ball valves; 7: reactor; 8: furnace; 9: samples; 10: thermocouple; 11: liquid product trap; 12: liquid nitrogen or ice- salt mixture; 13: pressure transducers; 14: mass flow meter; 15: gas chromatograph
▼ : NC; ○ : Fe(NO3)3; □ : FeSO4
a: Fe(NO3)3, 400 ℃; b: Fe(NO3)3, 700 ℃; c: FeSO4, 400 ℃; d: FeSO4, 700 ℃
a: pinewood with NC; b: pinewood with Fe(NO3)3 catalyst; c: pinewood with FeSO4 catalyst
a: pinewood with NC; b: pinewood with Fe(NO3)3 catalyst; c: pinewood with FeSO4 catalyst