Citation: Xiao Caiqin. Progress in the Syntheses of Sulfones[J]. Chemistry, ;2017, 80(10): 908-917. shu

Progress in the Syntheses of Sulfones

  • Received Date: 25 January 2017
    Accepted Date: 29 June 2017

Figures(12)

  • The broad spectrum of biological activity of sulfone compounds endows a wide applications in chemistry, medicine, agrochemistry and material science.Being an strong electron-withdrawing group, elongation of carbon chain could easily achieved via reaction of aliphatic sulfones with various electrophiles under basic condition.As a result, novel synthetic methodologies have continuous been developed especially during the past decades.This paper aimed at summarizing the synthetic methods of the sulfone compounds appeared in recent years, emphasizing the oxidation of sulfides, sulfonylation with sulfonyl chlorides and coupling of sulfinic acid salts.
  • 加载中
    1. [1]

      B J Zhang, A M Wassermann, M Vogt et al. J. Chem. Inf. Model., 2012, 52(12):3138~3143. 

    2. [2]

      J S Scott, A M Birch, K J Brocklehurst et al. J. Med. Chem., 2012, 55:5361~5379. 

    3. [3]

      W M Xu, F F Han, M He et al. J. Agric. Food Chem., 2012, 60:1036~1041. 

    4. [4]

      M C Carreno. Chem. Rev., 1995, 95:1717~1726. 

    5. [5]

      M Artico, R Silvestri, S Massa et al. J. Med. Chem., 1996, 39(2):522~530. 

    6. [6]

      T M Williams, T M Ciccarone, S C Mac Tough et al. J. Med. Chem., 1993, 36(9):1291~1294. 

    7. [7]

      W T Li, D R Hwang, J S Song et al. J. Med. Chem., 2010, 53:2409~2417. 

    8. [8]

      R Silvestri, M Artico, G L Regina et al. Farmaco, 2004, 59:201~210. 

    9. [9]

      A Basak, M Goswami, A Rajkumar et al. Bioorg. Med. Chem. Lett., 2015, 25(10):2225~2237.

    10. [10]

      S Consalvia, S Alfonsoa, A D Capuab et al. Bioorg. Med. Chem. Lett., 2015, 23(4):810~820.

    11. [11]

      L M Ni, X S Zheng, P K Somers et al. Bioorg. Med. Chem. Lett., 2003, 13(4):745~748.

    12. [12]

      D H Boschelli, J B Kramer, S S Khatana et al. J. Med. Chem., 1995, 38(22):4597~4614. 

    13. [13]

      T K Pal, S Dey, T Pathak. J. Org. Chem., 2011, 76(9):3034~3041. 

    14. [14]

      D Lee, C L Williamson, L N Chan et al. J. Am. Chem. Soc., 2012, 134:8260~8267. 

    15. [15]

      R Aldea, H Alper. J. Org. Chem., 1995, 60:8365~8366. 

    16. [16]

      R Beckerbauer, B E Smart. J. Org. Chem., 1996, 60:6186~6187.

    17. [17]

      R S Varma, R K Saini, H M Meshram. Tetrahed. Lett., 1997, 38:6525~6528. 

    18. [18]

      L Xu, J Cheng, M L Trudell. J. Org. Chem., 2003, 68:5388~5391. 

    19. [19]

       

    20. [20]

      K Bahrami. Tetrahed. Lett., 2006, 47:2009~2012. 

    21. [21]

      M Rahimizadeh, G Rajabzadeh, S M Khatami et al. J. Mol. Catal. A, 2010, 323:59~64. 

    22. [22]

      A Rostami, J Akradi. Tetrahed. Lett., 2010, 51:3501~3503. 

    23. [23]

      M Jereb. Green Chem., 2012, 14:3047~3052. 

    24. [24]

      B Maleki, S Hemmati, A Sedrpoushan et al. RSC Adv., 2014, 4:40505~40510. 

    25. [25]

      R D Chakravarthy, V Ramkumara, D K Chand. Green Chem., 2014, 16:2190~2196. 

    26. [26]

      B Graybill. J. Org. Chem., 1967, 32(9):2931~2933. 

    27. [27]

      C G Frost, J P Hartleya, D Griffinb. Tetrahed. Lett., 2002, 43:4789~4791 

    28. [28]

      G A Olah, A Orlinkov, A B Oxyglou et al. J. Org. Chem., 1985, 50(8):1306~1309. 

    29. [29]

      R P Singh, R M Kamble, K L Chandra et al. Tetrahed. Lett., 2001, 57:241~247. 

    30. [30]

      G A Olah, T Mathew, G K S Parakash. Chem. Commun., 2001, 1696~1697.

    31. [31]

      S J Nara, J R Harjani, M F Salunkhe. J. Org. Chem., 2001, 66:8616~8620. 

    32. [32]

      J Marquie, A Laporterie, J Dubac. J. Org. Chem., 2001, 66:421~425. 

    33. [33]

      V Garzya, I T Forbes, S Lauru et al. Tetrahed. Lett., 2004, 45:1499~1501. 

    34. [34]

      S Repichet, C Le Roux, P Hernandez et al. J. Org. Chem., 1999, 64(17):6479~6483. 

    35. [35]

      D U Singh, P R Singh, S D Samant. Tetrahed. Lett., 2004, 45:9079~9082. 

    36. [36]

      R G D Noronha, A C Fernandes, C C Romão. Tetrahed. Lett., 2009, 50:1407~1410. 

    37. [37]

      H W Liang, K Jiang, W Ding et al. Chem. Commun., 2015, 51:16928~16931. 

    38. [38]

      Z Y Wu, H Y Song, X L Cui et al. Org. Lett., 2013, 15(6):1270~1273. 

    39. [39]

      Y Fu, Q S Xu, Q Z Li et al. Org. Biomol. Chem., 2017, 13:2841~2845.

    40. [40]

    41. [41]

      S Cacchi, G Fabrizi, A Goggiamani et al. J. Org. Chem., 2004, 69:5608~5614. 

    42. [42]

      H Suzuki, H Abe. Tetrahed. Lett., 1995, 36:6239~6242. 

    43. [43]

      J M Baskin, Z Wang. Org. Lett., 2002, 4(25):4423~4425. 

    44. [44]

      C Beaulieu, D Guay, Z Y Wang et al. Tetrahed. Lett., 2004, 45:3233~3236. 

    45. [45]

      W Zhu, D W Ma. J. Org. Chem., 2005, 70:2696~2700. 

    46. [46]

      R Kuwano, Y Kondo, T Shirahama. Org. Lett., 2005, 7(14):2973~2975. 

    47. [47]

      A Kar, I A Sayyed, W F Lo et al. Org. Lett., 2007, 9(17):3405~3408. 

    48. [48]

      F Huang, R A Batey. Tetrahedron, 2007, 63:7667~7672. 

    49. [49]

      M L Kantam, B Neelima, B Sreedhar et al. Synlett, 2008, 10:1455~1458.

    50. [50]

      X Y Zhou, J Y Luo, Liu J et al. Org. Lett., 2011, 13(6):1432~1435. 

    51. [51]

      X S Wu, Y Chen, M B Li et al. J. Am. Chem. Soc., 2012, 134:14694~14698. 

    52. [52]

      S C Cullen, S Shekhar, N K Nere. J. Org. Chem., 2013, 78:12194~12201. 

    53. [53]

      X D Tang, L B Huang, Y L Xu et al. Angew. Chem. Int. Ed., 2014, 53:4205~4208.

    54. [54]

      F H Xiao, H Chen, H Xie et al. Org. Lett., 2014, 16:50~53. 

    55. [55]

      P Katrun, C Mueangkaew, M Pohmakotr et al. J. Org. Chem., 2014, 79(4):1778~1785. 

    56. [56]

      F H Xiao, S Q Chen, Y Chen et al. Chem. Commun., 2015, 51:652~654. 

    57. [57]

      J Chen, J C Mao, Y Zheng et al. Tetrahedron, 2015, 71(31):5059~5063. 

    58. [58]

      V K Yadav, V P Srivastava, L D S Yadav. Tetrahed. Lett., 2016, 57(21):2236~2238. 

    59. [59]

      K M Maloney, J T Kuethe, K Linn. Org. Lett., 2011, 13(1):102~105. 

    60. [60]

      S Liang, R Y Zhang, L Y Xi et al. J. Org. Chem., 2013, 78:11874~11880. 

    61. [61]

      N Umierski, G Manolikakes. Org. Lett., 2013, 15(1):188~191. 

    62. [62]

    63. [63]

      Z J Liu, R C Larock. Org. Lett., 2004, 6:99~102. 

    64. [64]

      Z J Liu, R C Larock. J. Am. Chem. Soc., 2005, 127(38):13112~13113. 

    65. [65]

      U K Tambar, B M Stoltz. J. Am. Chem. Soc., 2005, 127(15):5340~5341. 

    66. [66]

      T T Tayan, M Jeganmohan, M J Cheng. J. Am. Chem. Soc., 2006, 128(7):2232~2233. 

    67. [67]

      J L Henderson, A S Edwards, M F Greaney. J. Am. Chem. Soc., 2006, 128(23):7426~7427. 

    68. [68]

      V G Pandya, S B Mhaske. Org. Lett., 2014, 16:3836~3839. 

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    11. [11]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(240)
  • Abstract views(9749)
  • HTML views(4010)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return