Citation: Huang Senhe, Jiang Kaiyue, Chen Zhenying, Lu Chenbao, Zhuang Xiaodong. Two-Dimensional Polymers Based on sp2-Hybridized-Carbon Connections: Observations by Scanning Tunneling Microscope Technique[J]. Chemistry, ;2020, 83(5): 394-403. shu

Two-Dimensional Polymers Based on sp2-Hybridized-Carbon Connections: Observations by Scanning Tunneling Microscope Technique

  • Corresponding author: Zhuang Xiaodong, zhuang@sjtu.edu.cn
  • Received Date: 11 December 2019
    Accepted Date: 8 January 2020

Figures(14)

  • Two-dimensional (2D) polymers have great potential in the fields of optoelectronics, catalysis, energy storage, gas storage and separation, etc. Among them, sp2-Carbon (Csp2) linked 2D polymers have shown unique electrical and chemical features. Atomic precisely polymerization through scanning tunneling microscopy (STM) technology on lattice surfaces, including Au(111), Ag(111), Cu(111), Ru(111), HOPG, have provided an effective new strategy for constructing Csp2-linked 2D polymers. STM technology has high resolution capabilities and can be adopted for structural characterization and intrinsic optoelectronic and magnetic properties understanding. This review will introduce the study of 2D polymers based on Csp2 connection under STM technology.
  • 加载中
    1. [1]

      Feng D, Lei T, Lukatskaya M R, et al. Nat. Energy, 2018, 3(1): 30~36. 

    2. [2]

      Wu H B, Lou X W. Sci. Adv., 2017, 3(12): eaap9252.

    3. [3]

      Yang C, Schellhammer K S, Ortmann F, et al. Angew. Chem. Int. Ed., 2017, 56(14): 3920~3924. 

    4. [4]

      Li S L, Xu Q. Energy Environ. Sci., 2013, 6(6): 1656~1683. 

    5. [5]

      Rogge S M J, Bavykina A, Hajek J, et al. Chem. Soc. Rev., 2017, 46(11): 3134~3184. 

    6. [6]

      Xu H, Gao J, Jiang D. Nat. Chem., 2015, 7(11): 905~912. 

    7. [7]

      Duan J, Chen S, Zhao C. Nat. Commun., 2017, 8: 15341. 

    8. [8]

      Lee J, Farha O K, Roberts J, et al. Chem. Soc. Rev., 2009, 38(5): 1450~1459. 

    9. [9]

      Chughtai A H, Ahmad N, Younus H A, et al. Chem. Soc. Rev., 2015, 44(19): 6804~6849. 

    10. [10]

      Lu M, Liu J, Li Q, et al. Angew. Chem. Int. Ed., 2019, 58(36): 12392~12397. 

    11. [11]

      Zhao S, Wang Y, Dong J, et al. Nat. Energy, 2016, 1(12): 16184. 

    12. [12]

      Zhao H, Jin Z, Su H, et al. Chem. Commun., 2011, 47(22): 6389~6391. 

    13. [13]

      Horcajada P, Chalati T, Serre C, et al. Nat. Mater., 2010, 9(2): 172~178. 

    14. [14]

      Peng Y, Li Y, Ban Y, et al. Angew. Chem. Int. Ed., 2017, 56(33): 9757~9761. 

    15. [15]

      Rodenas T, Luz I, Prieto G, et al. Nat. Mater., 2015, 14(1): 48~55. 

    16. [16]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5): 1477~1504. 

    17. [17]

      Doonan C J, Tranchemontagne D J, Glover T G, et al. Nat. Chem., 2010, 2(3): 235~238. 

    18. [18]

      Getman R B, Bae Y S, Wilmer C E, et al. Chem. Rev., 2012, 112(2): 703~723. 

    19. [19]

      Huang N, Ding X, Kim J, et al. Angew. Chem. Int. Ed., 2015, 54(30): 8704~8707. 

    20. [20]

      Wang M, Ballabio M, Wang M, et al. J. Am. Chem. Soc., 2019, 141(42): 16810~16816. 

    21. [21]

      Xu H, Tao S, Jiang D. Nat. Mater., 2016, 15(7): 722~726. 

    22. [22]

      Campbell M G, Sheberla D, Liu S F, et al. Angew. Chem. Int. Ed., 2015, 54(14): 4349~4352. 

    23. [23]

      Zhu J, Yang C, Lu C, et al. Acc. Chem. Res., 2018, 51(12): 3191~3202. 

    24. [24]

      Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696): 666. 

    25. [25]

      Côté A P, Benin A I, Ockwig N W, et al. Science, 2005, 310: 1166~1170. 

    26. [26]

      Jin E, Asada M, Xu Q, et al. Science, 2017, 357(6352): 673~676. 

    27. [27]

      Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450~3453. 

    28. [28]

      Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.

    29. [29]

      Spitler E L, Dichtel W R. Nat. Chem., 2010, 2(8): 672~677. 

    30. [30]

      Feng X, Ding X, Jiang D. Chem. Soc. Rev., 2012, 41(18): 6010~6022. 

    31. [31]

      Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6759): 276~279. 

    32. [32]

      Dong R, Han P, Arora H, et al. Nat. Mater., 2018, 17(11): 1027~1032. 

    33. [33]

      Zhao M, Wang Y, Ma Q, et al. Adv. Mater., 2015, 27(45): 7372~7378. 

    34. [34]

      Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415~5418. 

    35. [35]

      Furukawa H, Cordova K E, O'Keeffe M, et al. Science, 2013, 341(6149): 1230444. 

    36. [36]

      Colson J W, Woll A R, Mukherjee A, et al. Science, 2011, 332(6026): 228~231. 

    37. [37]

      Lin S, Diercks C S, Zhang Y B, et al. Science, 2015, 349: 1208~1213. 

    38. [38]

      Zhang B, Mao H, Matheu R, et al. J. Am. Chem. Soc., 2019, 141(29): 11420~11424. 

    39. [39]

      Jiang J X, Su F, Trewin A, et al. J. Am. Chem. Soc., 2008, 130(24): 7710~7720. 

    40. [40]

      Bi S, Yang C, Zhang W, et al. Nat. Commun., 2019, 10(1): 2467. 

    41. [41]

      Zhuang X, Zhao W, Zhang F, et al. Polym. Chem., 2016, 7(25): 4176~4181. 

    42. [42]

      Zheng C, Zhu J, Yang C, et al. Sci. China Chem., 2019, 62(9): 1145~1193. 

    43. [43]

      Yuan Y, Yang Y, Ma X, et al. Adv. Mater., 2018, 30(12): e1706507.

    44. [44]

      Chen L, Yang Y, Jiang D. J. Am. Chem. Soc., 2010, 132(26): 9138~9143. 

    45. [45]

      Dong J, Zhang K, Li X, et al. Nat. Commun., 2017, 8(1): 1142. 

    46. [46]

      Zhang T, Qi H, Liao Z, et al. Nat. Commun., 2019, 10(1): 4225. 

    47. [47]

      Xu S, Wang G, Biswal B P, et al. Angew. Chem. Int. Ed., 2019, 58(3): 849~853. 

    48. [48]

      Liu W, Luo X, Bao Y, et al. Nat. Chem., 2017, 9(6): 563~570. 

    49. [49]

      Kissel P, Erni R, Schweizer W B, et al. Nat. Chem., 2012, 4(4): 287~291. 

    50. [50]

      Kory M J, Worle M, Weber T, et al. Nat. Chem., 2014, 6(9): 779~784. 

    51. [51]

      Su Y, Yao Z, Zhang F, et al. Adv. Funct. Mater., 2016, 26(32): 5893~5902. 

    52. [52]

      Liu K, Qi H, Dong R, et al. Nat. Chem., 2019, 11(11): 994~1000. 

    53. [53]

      Liu X, Xu Y, Jiang D. J. Am. Chem. Soc., 2012, 134(21): 8738~8741. 

    54. [54]

      Chen L, Honsho Y, Seki S, et al. J. Am. Chem. Soc., 2010, 132(19): 6742~6748. 

    55. [55]

      Franc G, Gourdon A. Phys. Chem. Chem. Phys., 2011, 13(32): 14283~14292. 

    56. [56]

      Ruffieux P, Wang S, Yang B, et al. Nature, 2016, 531(7595): 489~492. 

    57. [57]

      Rizzo D J, Veber G, Cao T, et al. Nature, 2018, 560(7717): 204~208. 

    58. [58]

      Li C J. Acc. Chem. Res., 2008, 42(2): 335~344.

    59. [59]

      Zhang X, Zeng Q, Wang C. Nanoscale, 2013, 5(18): 8269~8287. 

    60. [60]

      Zhuang X, Mai Y, Wu D, et al. Adv. Mater., 2015, 27(3): 403~427. 

    61. [61]

      Bielecki F U J. Ber. Deutschen Chem. Gesel., 1901, 34: 2174~2185. 

    62. [62]

      Ullmann F. Jus. Lieb. Ann. Chem., 1904, 332: 38~81. 

    63. [63]

      Judd C J, Haddow S L, Champness N R, et al. Sci. Rep., 2017, 7(1): 14541. 

    64. [64]

      Grill L, Dyer M, Lafferentz L, et al. Nat. Nanotech., 2007, 2(11): 687~691. 

    65. [65]

      Lafferentz L, Eberhardt V, Dri C, et al. Nat. Chem., 2012, 4(3): 215~220. 

    66. [66]

      Morchutt C, Bjork J, Krotzky S, et al. Chem. Commun., 2015, 51(12): 2440~2443. 

    67. [67]

      Gutzler R, Walch H, Eder G, et al. Chem. Commun., 2009, 29(29): 4456~4458.

    68. [68]

      Blunt M O, Russell J C, Champness N R, et al. Chem. Commun., 2010, 46(38): 7157~7159. 

    69. [69]

      Fritton M, Duncan D A, Deimel P S, et al. J. Am. Chem. Soc., 2019, 141(12): 4824~4832. 

    70. [70]

      Eichhorn J, Nieckarz D, Ochs O, et al. ACS Nano, 2014, 8(8): 7880~7889. 

    71. [71]

      Bieri M, Treier M, Cai J, et al. Chem. Commun., 2009, (45): 6919~6921. 

    72. [72]

      Bieri M, Nguyen M T, Gröning O, et al. J. Am. Chem. Soc., 2010, 132(46): 16669~16676. 

    73. [73]

      Cardenas L, Gutzler R, Lipton-Duffin J, et al. Chem. Sci., 2013, 4(8): 3263~3268. 

    74. [74]

      Smykalla L, Shukrynau P, Korb M, et al. Nanoscale, 2015, 7(9): 4234~4241. 

    75. [75]

      Mondal S. ChemTexts, 2016, 2(4): 17. 

    76. [76]

      Reppe W, Schlichting O, Klager K, et al. Jus. Lieb. Ann. Chem., 1948, 560(1): 1~92. 

    77. [77]

      Liu J, Ruffieux P, Feng X, et al. Chem. Commun., 2014, 50(76): 11200~11203. 

    78. [78]

      Zhou H, Liu J, Du S, et al. J. Am. Chem. Soc., 2014, 136(15): 5567~5570. 

    79. [79]

      Yang B, Bjork J, Lin H, et al. J. Am. Chem. Soc., 2015, 137(15): 4904~4907. 

    80. [80]

      Scheuermann C J. Chem. Asian J., 2010, 5(3): 436~451. 

    81. [81]

      Sun Q, Zhang C, Cai L, et al. Chem. Commun., 2015, 51(14): 2836~2839. 

    82. [82]

      Li Q, Yang B, Lin H, et al. J. Am. Chem. Soc., 2016, 138(8): 2809~2814. 

    83. [83]

      Abel M, Clair S, Ourdjini O, et al. J. Am. Chem. Soc., 2011, 133(5): 1203~1205. 

  • 加载中
    1. [1]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    2. [2]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    12. [12]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    18. [18]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

Metrics
  • PDF Downloads(25)
  • Abstract views(1876)
  • HTML views(468)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return