In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance
- Corresponding author: YANG Yong, yyong@sxicc.ac.cn
Citation:
GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, Lü Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(1): 75-82.
DUDLEY B. BP Statistical Review of World Energy[Z]. http://www.bp.com/papercopies. 2018-6.
RÖPER M. Fischer-Tropsch Synthesis[C]// Catalysis in C 1 Chemistry. 1983.
ANDERSO R B, KOLBE H, RALEK M. The Fischer-Tropsch Synthesis[M]. NewYork: Academic Press, 1984.
WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. Design basis of fischer-tropsch synthesis of iron-based catalysts: from theory to practice[J]. Chin Sci: Chem, 2017,47(11):1298-1311.
WANG Y, KANG J, ZHANG Q. Research advances in catalysts for fischer-tropsch synthesis[J]. Pet Technol, 2009,38(12):1255-1263.
SMIT E D, WECKHUYSEN B M. ChemInform abstract: The renaissance of iron-based Fischer-Tropsch synthesis: The multifaceted catalyst deactivation behavior[J]. ChemInform, 2010,40(19):2758-2781.
LI S, ROBERT J O, MEITZNER G D. Structural analysis of unpromoted Fe-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy[J]. Appl Catal A: Gen, 2001,219(1):215-222.
DUVENHAGE D J, ESPINOZA R L, COVILLE N J. fischer-tropsch precipitated iron catalysts: Deactivation studies[J]. Stud Surf Sci Catal, 1994,88:351-358. doi: 10.1016/S0167-2991(08)62760-3
BUKUR D B, OKABE K, ROSYNEK M P. Activation studies with a precipitated iron catalyst for fischer-tropsch synthesis. Ⅰ: Characterization studies[J]. J Catal, 1995,155(2):353-365. doi: 10.1006/jcat.1995.1217
BARTHOLOMEW C H, STOKER M W, MANSKER L. Effects of pretreatment, reaction, and promoter on microphase structure and fischer-tropsch activity of precipitated iron catalysts[J]. Stud Surf Sci Catal, 1999,126:265-272. doi: 10.1016/S0167-2991(99)80475-3
REYMOND J P, MERIAUDEAU P, TEICHNER S J. Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon monoxide and hydrogen[J]. J Catal, 1982,75(1):39-48.
BUTT J B. Carbide phases on iron-based fischer-tropsch synthesis catalysts part Ⅰ: Characterization studies[J]. Catal Lett, 1990,7(1/4):61-81.
RAUPP G B, DELGASS W N. Mössbauer investigation of supported Fe and FeNi catalysts: Ⅱ. Carbides formed fischer-tropsch synthesis[J]. J Catal, 1979,58(3):348-360. doi: 10.1016/0021-9517(79)90274-4
MACHOCKI K. Formation of carbonaceous deposit and its effect on carbon monoxide hydrogenation on iron-based catalysts[J]. Appl Catal: Gen, 1991,70(1):237-252. doi: 10.1016/S0166-9834(00)84167-6
DWYER D J, HARDENBERGH J H. The catalytic reduction of carbon monoxide over iron surfaces: A surface science investigation[J]. Chem Inform, 1984,87(1):66-76.
DRY M E. Catalysis-Science and Technology[M]. NewYork: Springer Verlag, 1988: 160-255.
MANSKER L D, JIN Y, BUKUR D B. Characterization of slurry phase iron catalysts for fischer-tropsch synthesis[J]. Appl Catal A: Gen, 1999,186(s 1/2):277-296.
WELLER S, HOFER L J E, ANDERSON R B. The role of bulk cobalt carbide in the Fischer-Tropsch synthesis1[J]. J Am Chem Soc, 1948(2):799-801.
BUKUR D B, NOWICKI L, MANNE R K. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: Ⅱ. Reaction studies[J]. J Catal, 1995,155(2):366-375. doi: 10.1006/jcat.1995.1218
BARTHOLOMEW C H, BOWMAN R M. Sulfur poisoning of cobalt and iron Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1985,15(1):59-67. doi: 10.1016/S0166-9834(00)81487-6
KRITZINGER J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catal Today, 2002,71(3):307-318.
PENDYALA V R R, JACOBS G, MOHANDAS J C. Fischer-Tropsch synthesis: Effect of water over iron-based catalysts[J]. Catal Lett, 2010,140(3/4):98-105.
ANDERSON R.B. Kinetics of the Fischer-Tropsch synthesis on iron catalysts[J]. Synfacts, 1964,44(2):1065-1070.
SATTERFIELD C N, HANLON R T, TUNG S E. Effect of water on the iron-catalyzed Fischer-Tropsch synthesis[J]. Ind Eng Chem Prod Res Dev, 1986,25(3):407-414. doi: 10.1021/i300023a007
BELL W K, HAAG W O. Conversion of synthesis gas to liquid hydrocarbons gel: US 4978689[P]. 1990-12-18.
GALVISl H M T, BITTER J H, DAVIDIAN T. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012,134(39):16207-16215. doi: 10.1021/ja304958u
ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985,95(1):325-332. doi: 10.1016/0021-9517(85)90038-7
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
1: normal gas cylinder; 2: needle valve; 3: pressure reducing valve; 4: mass flow controller; 5: check valve; 6: bubbler; 7: in situ capillary reactor setup (a: thermocouple, b: silica capillary, c: catalyst sample, d: silica wool); 8: back pressure valve; 9: gas chromatography (agilent 6890 N)
(x(WGS) = xCO * sCO2, x(FTS) =1-x(WGS))
(0, 25%, 55%, 68%)
(0, 25%, 55%, 68%)
(0, 25%, 55%, 68%)