Citation: YANG Wei-ya, LING Feng-xiang, WANG Gang, SUI Bao-kuan, ZHANG Hui-cheng, WANG Shao-jun. Macroporous alumina with three-dimensionally interconnected pore structure: Synthesis, characterization and transformation mechanism[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 745-750. shu

Macroporous alumina with three-dimensionally interconnected pore structure: Synthesis, characterization and transformation mechanism

  • Corresponding author: LING Feng-xiang, 
  • Received Date: 1 March 2019
    Revised Date: 22 April 2019

    Fund Project: The project was supported by China Petroleum & Chemical Corporation, SINOPEC (116027)China Petroleum & Chemical Corporation, SINOPEC 116027

Figures(5)

  • Amorphous macroporous alumina with three-dimensionally interconnected pore structure was prepared by phase separation technique. The macroporous morphology was modified significantly by hydrothermal treatment with ammonia. There are many plate-like aggregates of alumina with a size of 50-300 nm at the edge of wall; the product is still characterized by the worm-like three-dimensional penetration and uniform spatial distribution, whereas the size of macropores decreases from 430 to 250 nm. The modified alumina material was converted into high crystallinity gamma alumina by calcination at 550℃, which displays a specific surface area of up to 331 m2/g and pore size distributions con-centrated at 8.9 and 250 nm; meanwhile, the Lewis acidity and crushing strength are also improved. It was speculated that the amorphous hydrated hydroxyaluminium ion polymer rehydrated to form boehmite intermediate and transformed into gamma state at low calcination temperature; the AlOOH particles at the edge of macropore wall were then rearranged from inside to outside with NH4+ as template, fabricated into plate-like aggregates.
  • 加载中
    1. [1]

      CENTENO G, ANCHEYTA J, ALVAREZ A, MARROQUÍN G, ALONSO F, CASTILLO A. Effect of different heavy feedstocks on the deactivation of a commercial hydrotreating catalyst[J]. Fuel, 2012,100(Supplement C):73-79.

    2. [2]

      WEI J. Modeling of hydrodemetallation[J]. Stud Surf Sci Catal, 1991,68:333-341. doi: 10.1016/S0167-2991(08)62652-X

    3. [3]

      RANA M S, NAVARRO R, LEGLISE J. Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al2O3 catalysts:A batch reactor study[J]. Catal Today, 2004,98(1):67-74.

    4. [4]

      ZHU Hua-qing, GAO Zhi-xian, CHENG Chang-rui, TAN Chang-yu. Study and preparation of HDN catalysis for heavy oil:Characterization of Mo-Ni-P catalysis[J]. J Fuel Chem Technol, 2000,28(2):105-110. doi: 10.3969/j.issn.0253-2409.2000.02.003

    5. [5]

      LI Guang-ci, ZHAO Hui-ji, ZHAO Rui-yu, LIU Chen-guang. Effects of carious pore-enlarging methods on the pore structure of alumina catalyst support[J]. Pet Process Petrochem, 2010,41(1):49-54. doi: 10.3969/j.issn.1005-2399.2010.01.011

    6. [6]

      CHENG Chang-rui, ZHU Hua-qing, GAO Zhi-xian, DU Ming-xian, ZHAI Xiao-zhen. Study and preparation of HDN catalysis for heavy oil I. Preparation of support alumina by ph swing method[J]. Pet Process Petrochem, 1999,30(4):41-44.  

    7. [7]

      WANG Ding-cong. Mesoporous aluminium oxide support with large pore volume by nanoself-assembly[J]. Sci China Ser B, 2009,39(5):420-431.  

    8. [8]

      WANG Ding-cong, LIU Ji-duan. A research of alumina carrier with penetrating pore structure for asphaltene micelles to diffuse[J]. Pet Process Petrochem, 2010,41(1):31-35. doi: 10.3969/j.issn.1005-2399.2010.01.007

    9. [9]

      ZHANG Kai, WANG Ding-cong. Preparation of macroporous host-guest catalytic material using third nano self-assembly[J]. Sci China Ser Chem, 2013,43(11):1548-1556.  

    10. [10]

      SADAKANE M, SASAKI K, NAKAMURA H, YAMAMOTO T, NINOMIYAW , UEDA W. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method:The glass-transition temperature[J]. Langmuir, 2012,28(51):17766-17770. doi: 10.1021/la303921u

    11. [11]

      VAN DEN REIJEN J E, KEIJZERP H, DE JONGH P E. Pore structure stabilization during the preparation of single phase ordered macroporous α-alumina[J]. Materialia, 2018,4:423-430. doi: 10.1016/j.mtla.2018.10.016

    12. [12]

      TAKAHASHI R, ONISHI A, SATOM F. KURAMOTO M. Preparation of bimodal porous alumina using propylene glycol oligomers[J]. J Ceram Soc, 2017,125(10):742-746. doi: 10.2109/jcersj2.17062

    13. [13]

      TOKUDOME Y, FUJITA K, NAKANISHI K, MIURA K, HIRAO K. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation[J]. Chem Mater, 2007,19(14):3393-3398. doi: 10.1021/cm063051p

    14. [14]

      SUN M, ZHAO T, LI Z, MA Z, WANG J, LI F. Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separation route[J]. Ceram Int, 2016,42(14):15926-15932. doi: 10.1016/j.ceramint.2016.07.068

    15. [15]

      BAI Xiu-ling, MA Bo, YANG Wei-ya, LING Feng-xiang. Synthesis and characterization of macroporous Al2O3 with interconnected three-dimensional structure[J]. Contemp Chem Ind, 2013,42(3):253-255. doi: 10.3969/j.issn.1671-0460.2013.03.003

    16. [16]

      WU Jun-sheng, LI Xiao-gang, DU Wei, DONG Chao-fang. Preparation and characterization of meso/macro-porous composite oxide Al2O3-SiO2[J]. Chin J Catal, 2006,27(9):755-761. doi: 10.3321/j.issn:0253-9837.2006.09.003

    17. [17]

      YANG Wei-ya, LING Feng-xiang, ZHANG Hui-cheng, WANG Shao-jun, SHEN Zhi-qi. Synthesis and characterization of hierarchically porous alumina with three-dimensional interconnected pore structure[J]. J Fuel Chem Technol, 2018,46(5):558-563. doi: 10.3969/j.issn.0253-2409.2018.05.007 

    18. [18]

      ABSI-HALABI M, STANISLAUS A, AL-MUGHNI T, KHAN S, QAMRA A. Hydroprocessing of vacuum residues:Relation between catalyst activity, deactivation and pore size distribution[J]. Fuel, 1995,74(8):1211-1215. doi: 10.1016/0016-2361(94)00042-P

    19. [19]

      LIU T, JU L, ZHOU Y, WEI Q, DING S, ZHOU W, LUO X, JIANG S, TAO X. Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM)[J]. Catal Today, 2016,271:179-187. doi: 10.1016/j.cattod.2015.07.045

    20. [20]

      DAMYANOVA S, GRANGE P, DELMON B. Surface characterization of zirconia-coated alumina and silica carriers[J]. J Catal, 1997,168(2):421-430. doi: 10.1006/jcat.1997.1671

    21. [21]

      LOWENTHAL E E, SCHWARZ S, FOLEY H C. Surface chemistry of Rh-Mo/γ-Al2O3:An analysis of surface acidity[J]. J Catal, 1995,156(1):96-105. doi: 10.1006/jcat.1995.1235

    22. [22]

      STANISLAUS A, AL-DOLAMA K, ABSI-HALABI M. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism[J]. J Mol Catal A:Chem, 2002,181(1):33-39.  

    23. [23]

      CAI W, YU J, JARONIEC M. Template-free synthesis of hierarchical spindle-like[J]. J Mate Chem, 2010,20(22):4587-4594. doi: 10.1039/b924366f

    24. [24]

      HE W, LIU J, CAO Z, LI C, GAO Y. Preparation and characterization of monodisperse zirconia spherical nanometer powder via lamellar liquid crystal template method[J]. Chin J Chem Eng, 2015,23(10):1721-1727. doi: 10.1016/j.cjche.2015.08.032

    25. [25]

      LIU Dong-mei, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, SUN Wan-fu, ZHAO Xiao-xue. Synthesis, characterization and formation mechanism of hexagonal prism polycrystalline γ-Al2O3[J]. J Fuel Chem Technol, 2013,41(10):1262-1267.  

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(9)
  • Abstract views(1549)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return