Citation: HUANG Pan, CHEN Yong-dong, LAI Nan-jun, JIANG Bing-zheng, YANG Cao-ping, ZHANG Chao-lei, CHEN Yao-qiang. Effects of metal modification on the performance of Pt/β-zeolite catalysts in the oxidation of HC, CO and SO2 in diesel exhaust[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 882-887. shu

Effects of metal modification on the performance of Pt/β-zeolite catalysts in the oxidation of HC, CO and SO2 in diesel exhaust

  • Corresponding author: CHEN Yong-dong, yongdongchen@swpu.edu.cn
  • Received Date: 14 January 2016
    Revised Date: 13 April 2016

    Fund Project: Scientific Research Starting Project of SWPU 2014QHZ016The project was supported by the National High Technology Research and Dvelopment Program of China 2013AA065304The Fifteenth Period College Students′ Extracurricular Open Experiment of Southwest Petroleum University KSZ15064Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education LYJ1308

Figures(5)

  • Pt/β-zeolite catalysts were modified with Ce, Cr, Mo and Cu by impregnation method and characterized by nitrogen sorption, XRD, H2-TPR, NH3-TPD and XPS; the effects of metal modification on the textural properties, skeletal structure, surface acidity as well as the catalytic performance in the oxidation of SO2, HC and CO in the simulated diesel exhaust gas were investigated. The results indicate that metal modification has little influence on the textural properties and skeletal structure of the Pt/β-zeolite catalyst, whereas the addition of Cu, Cr and Mo can change the acid strength and has a stronger inhibition effect on the oxidation of SO2. Especially, the Cu-modified Pt/β-zeolite catalyst exhibits the best ability to inhibit the oxidation of SO2; the SO2 conversions over Cu modified catalyst under 350 and 450 ℃ are decreased by 70.4% and 70.2%, respectively, in comparison with those over the unmodified Pt/β-zeolite catalyst. However, because of the interaction between metal and Pt species, Pt species becomes more difficult to reduce over the metal modified Pt/β-zeolite catalysts, which may lead to a decrease of their catalytic activity in the oxidation of HC and CO.
  • 加载中
    1. [1]

      JOHNSON T V. Diesel emissions in review[J]. SAE Int J Engines, 2011,4(1):143-157. doi: 10.4271/2011-01-0304

    2. [2]

      KIM Y S, LIM S J, KIM Y H. The role of doped Fe on the activity of alumina supported Pt and Pd diesel exhaust catalysts[J]. Res Chem Intermed, 2011,38(3/5):947-955.  

    3. [3]

      PATRICK G, LAETITIA U, MICHEL P, EMMANUEL T. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions influence of water and sulphur containing compounds[J]. Catal Today, 2003,83(1):45-57.  

    4. [4]

      PATRICK G, MICHEL P. Complete oxidation of methane at low temperature over noble metal based catalysts: A review[J]. Appl Catal B: Environ, 2002,39(1):1-37. doi: 10.1016/S0926-3373(02)00076-0

    5. [5]

      WANG Jian-qiang, WANG Yuan, LIU Shuang-xi, GAO Ji-dong, MA Jie, GAO Hai-yang. Progress in diesel oxidation catalysts[J]. Sci Technol Rev, 2012,30(25):68-73.  

    6. [6]

      ZHANG Wei-gang, CHENG Xiao-xia, TONG Jia-yang, SUN Lu-gang. Influence of sulfur content of diesel on the use of diesel engine[J]. Nav Arch Ocean Eng, 2015,31(2):48-51.  

    7. [7]

      WIEBENGAC M H, KIMA C H. Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts[J]. Catal Today, 2012,184(1):197-204. doi: 10.1016/j.cattod.2011.11.014

    8. [8]

      HAMZEHLOUYAN T, SAMPARA C S, LI J H, KUMAR A, EPLING W S. Kinetic study of adsorption and desorption of SO2 over γ -Al2O3 and Pt/γ-Al2O3[J]. Appl Catal B: Environ, 2016,181:587-598. doi: 10.1016/j.apcatb.2015.08.003

    9. [9]

      MA Jing-hong, PAN Da-hai, MA Hong-fang, LI Rui-feng, XIE Ke-chang. Effect of zeolite acidity on two-step conversion of methane over supported platinum catalysts[J]. J Fuel Chem Technol, 2005,33(2):241-246.  

    10. [10]

      TANG T D, YIN C Y, WANG L F, JI Y Y, XIAO F S. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics[J]. J Catal, 2008,257(1):125-133. doi: 10.1016/j.jcat.2008.04.013

    11. [11]

      WANG Heng-qiang, ZHANG Cheng-hua, WU Bao-shan, REN Jie, LI Yong-wang. Effect of Ga and Zn modification on propylene aromatization over HZSM-5 catalysts[J]. J Fuel Chem Technol, 2010,38(5):567-581.  

    12. [12]

      CHEN Yong-dong, WANG Lei, GUAN Xiao-xu, TANG Shui-hua, GONG Mao-chu, CHEN Yao-qiang. A novel diesel oxidation catalyst with low SO2 oxidation activity and capable of meeting Euro V emission standards[J]. Chin J Catal, 2013,34(4):667-673. doi: 10.1016/S1872-2067(12)60545-2

    13. [13]

      YANG Zheng-zheng, CHEN Yong-dong, ZHAO Ming, ZHOU Ju-fa, GONG Mao-chu, CHEN Yao-qiang. Preparation and properties of Pt/ZrxTi1-xO2 catalysts with low-level SO2 oxidation activity for diesel oxidation[J]. Chin J Catal, 2012,33(5):819-826.

    14. [14]

      FAN Guang, LIN Cheng. Research progress on modification of beta molecular sieve[J]. J Mol Catal, 2015,19(5):408-417.  

    15. [15]

      GAO Qun-yang, LÜ Gong-xuan. Effects of Pt and Pd additives on the dispersion of Ni and anti-coking properties of Ni based catalysts[J]. J Mol Catal, 2008,22(4):294-301.  

    16. [16]

      NAGAI Y, SHINJOH H, YOKOTA K. Oxidation selectivity between n-hexane and sulfur dioxide in diesel simulated exhaust gas over platinum-supported zirconia catalyst[J]. Appl Catal B: Environ, 2002,39(2):149-155. doi: 10.1016/S0926-3373(02)00082-6

    17. [17]

      OLSSON L, FRIDELL E. The influence of Pt oxide formation and Pt dispersion on the reactions NO2⇔ NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3[J]. J Catal, 2002,210(2):340-353. doi: 10.1006/jcat.2002.3698

    18. [18]

      RUPPERT A M, PARYJCZAK T. Pt/ZrO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde: Tuning the SMSI effect for optimum performance[J]. Appl Catal A: Gen, 2007,320(22):80-90.

    19. [19]

      GJERVAN T, PRESTVIK R, T TDAL B, LYMAN C E, HOLMEN A. The influence of the chlorine content on the bimetallic particle formation in Pt-Re/Al2O3 studied by STEM/EDX, TPR, H2 chemisorption and model reaction studies[J]. Catal Today, 2001,65(2/4):163-169.

    20. [20]

      SHEN S C, KAWI S. Mechanism of selective catalytic reduction of NO in the presence of excess O2 over Pt/Si-MCM-41 catalyst[J]. J Catal, 2003,213(2):241-250. doi: 10.1016/S0021-9517(02)00048-9

    21. [21]

      XIN Qin. Research Methods of Solid Catalyst[M]. Beijing: Science Press, 2004: 305.

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1)
  • Abstract views(1582)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return