Citation: HUANG Jin-ming, ZHANG Jun-ying, TIAN Chong, ZHANG Shi-bo, ZHAO Yong-chun, ZHENG Chu-guang. Investigation on the transfer-transformation behavior of beryllium during coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 648-653. shu

Investigation on the transfer-transformation behavior of beryllium during coal combustion

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 31 December 2015
    Revised Date: 15 March 2016

Figures(7)

  • The thermodynamic equilibrium calculation was conducted to estimate the beryllium conversion in the combustion process of coal, and the high temperature vacuum tube furnace was used to research the beryllium compounds reaction with other solid substances and the coal combustion experiments by adding sorbents. X-ray diffraction (XRD), X-ray fluorescence probe (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) were used to reveal the transformation behavior of beryllium during coal combustion. The results indicate that the beryllium only reacts with aluminum compounds and the reaction resultants are BeAl2O4 and BeAl6O10, the solid-solid reaction experiments are in agreement with thermodynamic calculation results, but the actual reaction temperature is about 1000℃, far above the thermodynamic calculation temperature 650℃. Because beryllium reacts with Al2O3 in combustion, the release rate of beryllium in the coal sample added with Al2O3 reduces greatly by up to 33%. Moreover, the inhibition of illite to beryllium release for coal combustion with addition of illite is weaker owing to a higher reaction temperature of illite with beryllium than that of Al2O3. Kaolinite, because its reaction temperature with beryllium is too high, has the lowest inhibition effect.
  • 加载中
    1. [1]

      LIU Hai-bin, YAO Jian-jun. The research progress of beryllium disease pathogenesis and diagnosis[J]. Ind Health Occup Dis, 1997,23(4):241-244.  

    2. [2]

      PROFUMO A, SPINI G, CUCCA L, PESAVENTO M. Determination of inorganic beryllium species in the particulate matter of emissions and working areas[J]. Talanta, 2002,57:929-934. doi: 10.1016/S0039-9140(02)00134-0

    3. [3]

      BEI Wei. Environmental Chemistry and Environmental Protection[M]. Changsha:Hunan People's Press, 1976.

    4. [4]

      ZEVENHOVEN R, KILPINEN P. Control of Pollutants in Flue Gases and Fuel Gases[M]. Espoo:Turku, 2004.

    5. [5]

      NODELMAN I G, PISUPATI S V, MILLER S F, SCARONI A W. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel[J]. J Hazard Mater, 2000,74:47-59. doi: 10.1016/S0304-3894(99)00198-3

    6. [6]

      SWAINE D J. Trace Elements in Coal[M]. London:Butter words, 1990.

    7. [7]

      U.S.National Committee for Geochemistry. Panel on the Trace Elements Geochemistry of Coal Resource Development Related to Health, Trace Elements Geochemistry of Coal Resource Development Related to Environmental Quality and Health[M]. Washington D C:National Academy Press, 1990.

    8. [8]

      GB 16297-1996, Integrated emission standard of air pollutants[S].

    9. [9]

      National Bureau of Statistics of China. China Energy Statistical Yearbook[M]. Beijing:China Statistics Press, 2010-2014.

    10. [10]

      NRIAGU J O, PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988,333:134-139. doi: 10.1038/333134a0

    11. [11]

      SWAINE D J, GOODARZI F. Environmental Aspects of Trace Elements in Coal[M]. Berlin:Springer, 1995.

    12. [12]

      ZHENG Chu-guang, XU Ming-hou, ZHANG Jun-ying, LIU Jing. Emissions and Control of Trace Elements from Coal Combustion[M]. Hubei:Hubei Science and Technology Press, 2002.

    13. [13]

      DAI S F, VLADIMIR V S, COLIN R W, JIANG J H, JAMES C H, SONG X L, JIANG Y F, WANG X B, TATIANA G, LI X, LIU H D, ZHAO L X. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals[J]. Int J Coal Geol, 2014,121:79-97. doi: 10.1016/j.coal.2013.11.004

    14. [14]

      BAI Xiang-fei, LI Wen-hua, CHEN Wen-min. Distribution and modes of occurrence of beryllium in chinese coal[J]. J Fuel Chem Technol, 2004,32(2):155-159.  

    15. [15]

      TANG Xiu-yi, HUANG Wen-hui. Trace elements of coal and its significances on research[J]. Coal Geol Chin, 2002,14:1-4.  

    16. [16]

      MOU Bao-lei. Element Geochemistry[M]. Beijing:Peking University Press, 1999.

    17. [17]

      WANG J, TOMITA A. A chemistry on the volatility of some trace elements during coal combustion and pyrolysis[J]. Energy Fuels, 2003,17(4):954-960. doi: 10.1021/ef020251o

    18. [18]

      GIBBS B M, THOMPAON D, ARGENT B B. Mobilisation of trace elements from as-supplied and additionally cleaned coal:Predictions for Ba, Be, Cd, Co, Mo, Nb, Sb, V and W[J]. Fuel, 2008,87:1217-1229. doi: 10.1016/j.fuel.2007.06.015

    19. [19]

      GEORGE A, LARRION M, DUGWELL D, FENNELL P S, KANDIYOTI R. Co-firing of single, binary, and ternary fuel blends:Comparing synergies within trace element partitioning arrived at by thermodynamic equilibrium modeling and experimental measurements[J]. Energy Fuels, 2010,24:2918-2923. doi: 10.1021/ef100001h

    20. [20]

      SHAO Jing-bang, SHAO Xu-xin, WANG Zu-ne. The influence of mineral composition on the properties of coal ash[J]. Coal Process Compr Util, 1996,6:37-41.  

    21. [21]

      FINKELMAN R B. Models of occurrence of potentially hazardous elements in coal:Levels of confidence[J]. Fuel Process Technol, 1994,39(1):21-34.  

    22. [22]

      QUEROL X, LASTUEY A, PLANA F. Trace elements in high-S subbituminous coals from the teruel mining district[J]. Appl Geochem, 1992,7(5):547-561.  

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    3. [3]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    6. [6]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    7. [7]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    17. [17]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    18. [18]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

Metrics
  • PDF Downloads(0)
  • Abstract views(915)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return