Citation: DU Ze-yu, ZHU Ming, BAO Zhe-yu, SHI Da-you, CHEN Xiao-rong, XU Yan, MEI Hua. Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 692-699. shu

Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method

  • Corresponding author: ZHU Ming, mingzhu84@njtech.edu.cn
  • Received Date: 26 January 2018
    Revised Date: 20 April 2018

Figures(12)

  • Cu/SiO2 catalysts were prepared via ammonia evaporation method, using fumed silica (SiO2-aer), silica gel (SiO2-gel) and alkaline silica sol (SiO2-sol) as the silica sources and their catalytic performance in methanol decomposition were investigated. The catalysts were characterized by N2 adsorption-desorption, N2O chemisorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy(XPS). The results indicate that silica source can affect the decomposition activity of Cu/SiO2 catalysts. The Cu/SiO2-sol catalyst prepared with alkaline silica sol exhibits larger surface area, smaller active site size and more uniform dispersion of Cu. Therefore, it gives Cu/SiO2-sol a better decomposition performance than other catalysts. Methanol conversion on Cu/SiO2-sol is 10% higher than that on Cu/SiO2-aer, and 7% higher than that on Cu/SiO2-gel. Additionally, byproducts concentration on Cu/SiO2-sol is considerably lower than other catalysts. Under the reaction conditions of 280 ℃, 1 MPa and 0.6 h-1 of WHSV, methanol conversion of 98.4% and gas yield of 96.7% can be achieved.
  • 加载中
    1. [1]

      TONELLI F, GORRIZ O, TARDITI A, CORNAGLIA L, ARRUA L, ABELLO M C. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(39):13379-13387. doi: 10.1016/j.ijhydene.2015.08.046

    2. [2]

      AMIRI T Y, MOGHADDAS J. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(3):1472-1480. doi: 10.1016/j.ijhydene.2014.11.104

    3. [3]

      SIRIRUANG C, CHAROJROCHKUL S, TOOCHINDA P. Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3[J]. Monatsh Chem, 2016,147(7):1143-1151. doi: 10.1007/s00706-016-1662-5

    4. [4]

      VERENDEL J J, DINER P. Efficient, low temperature production of hydrogen from methanol[J]. ChemCatChem, 2013,5(10):2795-2797. doi: 10.1002/cctc.v5.10

    5. [5]

      LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094

    6. [6]

      YANG R X, CHUANG K H, WEY M Y. Hydrogen production through methanol steam reforming:Effect of synthesis parameters on Ni-Cu/CaO-SiO2 catalysts activity[J]. Int J Hydrogen Energy, 2014,39(34):19494-19501. doi: 10.1016/j.ijhydene.2014.09.140

    7. [7]

      MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000,152(1/2):157-165.

    8. [8]

      ZHANG Xiong-wei, CHU Wei, WANG Xiao-dong, YANG Wei-shen, SHENG Shi-shan, ZHANG Tao. Preparation of alumina-supported nobel metal iridium catalysts and their catalytic performance for methanol decomposition[J]. Chin J Catal, 2006,27(10):863-867. doi: 10.3321/j.issn:0253-9837.2006.10.007

    9. [9]

      YONG S T, OOI C W, CHAI S P, YU F, WU X S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. Int J Hydrogen Energy, 2013,38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023

    10. [10]

      YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/gamma-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010,5(6):862-868. doi: 10.1002/apj.v5.6

    11. [11]

      LI Xue, WANG Xiao-wen, ZHAO Ming, LIU Jian-ying, GONG Mao-chu, CHEN Yao-qiang. Ca-modified Pd/CeO2-ZrO2-Al2O3 catalysts for methanol decomposition[J]. Chin J Catal, 2011,32(11):1739-1746.

    12. [12]

      NI Zhe-ming, MAO Jiang-hong, PAN Guo-xiang, XU Qian, LI Xiao-nian. Mechanism of palladium-catalyzed methanol decomposition for hydrogen production[J]. Acta Phys-Chim Sin, 2009,25(5):876-882.

    13. [13]

      WANG G C, ZHOU Y H, MORIKAWA Y, NAKAMURA J, CAI Z S, ZHAO X Z. Kinetic mechanism of methanol decomposition on Ni(111) surface:A theoretical study[J]. Phys Chem B, 2005,109(25):12431-12442. doi: 10.1021/jp0463969

    14. [14]

      GREELEY J, MAVRIKAKIS M. Methanol decomposition on Cu(111):A DFT study[J]. J Catal, 2002,208(2):291-300. doi: 10.1006/jcat.2002.3586

    15. [15]

      CHEN Hong-mei, ZHU Yu-lei, DING Guo-qiang, ZHENG Hong-yan, LI Yong-wang. Study on hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Fuel Chem Technol, 2011,39(7):519-526.  

    16. [16]

      HUANG Z W, LIU H L, CUI F, ZUO J L, CHEN J, XIA C G. Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catal Today, 2014,234(4):223-232.

    17. [17]

      JI D H, LIU G, JIA M J, ZHANG W X, WANG G J, WU T H, WANG Z L. Studies on dehydrogenation of 2-butanol over supported copper catalysts prepared by sol-gel and impregnation methods[J]. Chem J Chin Univ, 2007,28(8):1543-1546.  

    18. [18]

      CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2008,257(1):172-180. doi: 10.1016/j.jcat.2008.04.021

    19. [19]

      WANG Z Q, XU Z N, PENG S Y, ZHANG M J, LU G, CHEN Q S, CHEN Y M, GUO G C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal, 2015,5(7):4255-4259. doi: 10.1021/acscatal.5b00682

    20. [20]

      GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012,134(34):13922-13925. doi: 10.1021/ja3034153

    21. [21]

      ZHAO S, YUE H R, ZHAO Y J, WANG B, GENG Y C, LV J, WANG S P, GONG J L, MA X B. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:Enhanced stability with boron dopant[J]. J Catal, 2013,297(1):142-150.

    22. [22]

      ZHANG C C, WANG D H, ZHU M Y, YU F, DAI B. Effect of different nano-sized silica sols as supports on the structure and properties of Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. Catalysts, 2017,7(3)75.

    23. [23]

      DONG X H, MA X G, XU H Y, GE Q J. Comparative study of silica-supported copper catalysts prepared by different methods:Formation and transition of copper phyllosilicate[J]. Catal Sci Technol, 2016,6(12):4151-4158. doi: 10.1039/C5CY01965F

    24. [24]

      HUANG Z W, CUI F, XUE J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition-precipitation methods:Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catal Today, 2012,183(1):42-51. doi: 10.1016/j.cattod.2011.08.038

    25. [25]

      WANG Xin-lei, MA Kui, GUO Li-hong, DING Tong, CHENG Qing-peng, TIAN Ye, LI Xin-gang. Catalytic performance for hydrogen production through steam reforming of dimethyl ether over silica supported copper catalysts synthesized by ammonia evaporation method[J]. Acta Phys-Chim Sin, 2017,33(8):1699-1708. doi: 10.3866/PKU.WHXB201704263

    26. [26]

      QIU Kun-zan, GUO Wen-wen, WANG Hai-xia, ZHU Ling-jun, WANG Shu-rong. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate[J]. Acta Phys-Chim Sin, 2015,31(6):1129-1136. doi: 10.3866/PKU.WHXB201503272

    27. [27]

      LI F J, WANG L G, HAN X, CAO Y, HE P, LI H Q. Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method[J]. Int J Hydrogen Energy, 2017,42(4):2144-2156. doi: 10.1016/j.ijhydene.2016.09.064

    28. [28]

      GHODSELAHI T, VESAGHI M A, SHAFIEKHANI A, BAGHIZADEH A, LAMEⅡ M. XPS study of the Cu@Cu2O core-shell nanoparticles[J]. Appl Surf Sci, 2008,255(5):2730-2734. doi: 10.1016/j.apsusc.2008.08.110

    29. [29]

      YU X, ZHAI S B, ZHU W C, GAO S, YAN J B, YUAN H J, CHEN L L, LUO J, ZHANG W X, WANG Z L. The direct transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts that contain copper phyllosilicate[J]. J Chem Sci, 2014,126(4):1013-1020. doi: 10.1007/s12039-014-0659-z

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(11)
  • Abstract views(1307)
  • HTML views(602)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return