Citation: DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 626-631. shu

Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene

  • Corresponding author: XIAO Yong, xiaoyong@sxice.ac.cn
  • Received Date: 17 January 2020
    Revised Date: 19 March 2020

Figures(5)

  • A series of mixed TiO2-ZrO2 oxide catalysts used for the dehydration of octadecanol to octadecene were prepared by doping TiO2 in ZrO2 and calcining at 350-500 ℃. With the increase of calcination temperature, the amount of Lewis acid sites on the catalyst surface gradually increases. The amount of Lewis acid sites on the catalyst calcined at 450 ℃ is the most, and when the calcination temperature is over 450 ℃, the amount of Lewis acid sites decreases. No Brønsted acid sites are found on the catalysts. The mixed TiO2-ZrO2 oxides calcined at temperature below 400 ℃ contain Ti-O-Zr bonds and amorphous structure. The mixed TiO2-ZrO2 oxides with calcination temperature above 400 ℃ show monoclinic and tetragonal phases of ZrO2. The crystalline phase of the metal oxides and amount of the acid sites simultaneously affect the performance of the catalysts. The acid sites on the mixed TiO2-ZrO2 oxides with amorphous structure have much higher dehydration activity than those with monoclinic and tetragonal zirconia crystalline phases. The catalyst calcined at 400 ℃ has the highest yield of 1-octadecene.
  • 加载中
    1. [1]

      ECHAROJ S, SANTIKUNAPORN M, CHAVADEJ S. Transformation of bioderived 1-decanol to diesel-like fuel and biobased oil via dehydration and oligomerization reactions[J]. Energy Fuels, 2017,31(9):9465-9476. doi: 10.1021/acs.energyfuels.7b01247

    2. [2]

      LI Ying-hui, ZENG Qun-ying, WAN Shu-bao, CHI Ke-bin, DU Hai. Synthesis process and market of α-olefin[J]. Adv Fine Petrochem, 2004,5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004

    3. [3]

      LI Ying-hui, ZENG Qun-ying, XIAO Hai-cheng, WAN Shu-bao, CHI Ke-bin. Progress in alpha olefin synhesis processes[J]. Nat Gas Chem Ind, 2005,30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013

    4. [4]

      ZHAO Hui-ping. Octene-1 manufacturing process[J]. Petrochem Ind Technol, 2006(1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017

    5. [5]

      ZHENG Lai-chang, WANG Ru-wen, YANG Xiao-hui, YANG Ke. Technical progress of α-olefin production from vegetabe oil[J]. Lubr Oil, 2015,30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001

    6. [6]

      SONG W, LIU Y, BARATH E, WANG L L, ZHAO C, MEI D, LERCHER J A. Dehydration of 1-octadecanol over H-BEA:A combined experimental and computational study[J]. ACS Catal, 2016,6(2):878-889. doi: 10.1021/acscatal.5b01217

    7. [7]

      CHOKKARAM S, DAVIS B H. Dehydration of 2-octanol over zirconia catalysts:Influence of crystal structure, sulfate addition and pretreatment[J]. J Mol Catal A:Chem, 1997,118(1):89-99. doi: 10.1016/S1381-1169(96)00380-9

    8. [8]

      KOSTESTKYY P, YU J, GORTE R J, MPOURMPAKIS G. Structure-activity relationships on metal-oxides:Alcohol dehydration[J]. Catal Sci Technol, 2014,4:3861-3869. doi: 10.1039/C4CY00632A

    9. [9]

      SATO S, TAKAHASHI R, SODESAWA T, YAMAMOTO N. Dehydration of 1, 4-butanediol into 3-buten-1-ol catalyzed by ceria[J]. Catal Commun, 2004,5(8):397-400. doi: 10.1016/j.catcom.2004.05.006

    10. [10]

      CHEN B H, LU J Z, WU L P, CHAO Z S. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chin J Catal, 2016,37(11):1941-1948. doi: 10.1016/S1872-2067(16)62524-X

    11. [11]

      TAKAHASHI N, SUDA A, HACHISUKA I, SUGIURA M, SOBUKAWA H, SHINJOH H. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides[J]. Appl Catal B:Environ, 2007,72(1/2):187-195.  

    12. [12]

      MAITY S, RANA M, BEJ S, ANCHEYTA-JUAREZ J, DHAR G M, RAO T P. TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst[J]. Catal lett, 2001,72:115-119.  

    13. [13]

      LI K T, WANG I, WU J C. Surface and catalytic properties of TiO2-ZrO2 mixed oxides[J]. Catal Surv Asia, 2012,16(4):240-248. doi: 10.1007/s10563-012-9147-y

    14. [14]

      MANRIQUEZ M, LOPEZ T, GOMEZ R, NAVARRETE J. Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties[J]. J Mol Catal A:Chem, 2004,220(2):229-237. doi: 10.1016/j.molcata.2004.06.003

    15. [15]

      AN M, LI L, CAO Y, MA F, LIU D, GU F. Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance[J]. Mol Catal, 2019,475110482. doi: 10.1016/j.mcat.2019.110482

    16. [16]

      FAN M, SI Z, SUN W, ZHANG P. Sulfonated ZrO2-TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid[J]. Fuel, 2019,252:254-261. doi: 10.1016/j.fuel.2019.04.121

    17. [17]

      LIANG Xiao-feng, YANG Shi-yuan, WANG Jun-xia. X-ray and raman studies of ZrO2 particles synthesized by alcohol-thermal method[J]. J Synth Cryst, 2008,37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054

    18. [18]

      POWERS D, GRAY H B. Characterization of the thermal dehydration of zirconium oxide halide octahydrates[J]. Inorg Chem, 1973,12(11):2721-2726. doi: 10.1021/ic50129a045

    19. [19]

      KILO M, SCHILD C, WOKAUN A, BAIKER A. Surface oxidic phases of binary and ternary zirconia-supported metal catalysts investigated by raman spectroscopy[J]. J Chem Soc, Faraday Trans, 1992,88:1453-1457. doi: 10.1039/ft9928801453

    20. [20]

      MICIUKIEWICZ J, MANG T, KNOZINGER H. Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide[J]. Appl Catal A:Gen, 1995,122(2):151-159. doi: 10.1016/0926-860X(94)00236-3

    21. [21]

      SUN Chuan-zhi. Synthesis and Characterization of Titanium Oxide Based Catalysts and Their Application in the Environmental Catalysis[M]. Nanjing:Nanjing University, 2011.

    22. [22]

      REDDY B M, CHOWDHURY B, SMIRNIOTIS P G. An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides[J]. Appl Catal A:Gen, 2001,211(1):19-30. doi: 10.1016/S0926-860X(00)00834-6

    23. [23]

      MULLINS W, AVERBACH B. Bias-reference X-Ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals[J]. Surf Sci, 1988,206(1/2):29-40.  

    24. [24]

      STEPHENSON D, BINKOWSKI N. X-ray photoelectron spectroscopy of silica in theory and experiment[J]. J Non-Cryst Solids, 1976,22(2):399-421. doi: 10.1016/0022-3093(76)90069-7

    25. [25]

      BARTHOS R, LONYI F, ENGELHARDT J, VALYON J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides[J]. Top Catal, 2000,10:79-87. doi: 10.1023/A:1019112017065

    26. [26]

      GOTT T, OYAMA S T. A general method for determining the role of spectroscopically observed species in reaction mechanisms:Analysis of coverage transients(ACT)[J]. J Catal, 2009,263(2):359-371. doi: 10.1016/j.jcat.2009.02.028

    27. [27]

      HONG E, BAEK S W, SHIN M, SUH Y W, SHIN C H. Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts[J]. J Ind Eng Chem, 2017,54:137-145. doi: 10.1016/j.jiec.2017.05.026

    28. [28]

      EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141:347-354. doi: 10.1006/jcat.1993.1145

    29. [29]

      TANABE K, SUMIYOSHI T, SHIBATA K, KIYOURA T, KITAGAWA J. A new hypothesis regarding the surface acidity of binary metal oxides[J]. Bull Chem Soc Jpn, 1974,47:1064-1066. doi: 10.1246/bcsj.47.1064

    30. [30]

      DAS D, MISHRA H K, PARIDA K M. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides[J]. J Mol Catal A:Chem, 2002,189:271-282. doi: 10.1016/S1381-1169(02)00363-1

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    9. [9]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    10. [10]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    11. [11]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    12. [12]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

Metrics
  • PDF Downloads(7)
  • Abstract views(729)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return