Citation: Hao Shuangling, Liu Haicheng, Xue Tingting, Gao Chuangchuang. Progress in Sample Collection and Analysis of Microplastics in the Water[J]. Chemistry, ;2020, 83(5): 427-433. shu

Progress in Sample Collection and Analysis of Microplastics in the Water

  • Corresponding author: Liu Haicheng, hhua306@sohu.com
  • Received Date: 12 November 2019
    Accepted Date: 26 January 2020

  • Microplastics are difficult to degrade in the environment, they can exist for a long time in water and sediments, and can accumulate in aquatic organisms, which has become one of the environmental issues that have attracted great concern. Rapid, efficient and accurate detection technology is an important part of the research on microplastics in the water environment, which is crucial for optimizing the research route, analyzing the research results and summarizing the law of microplastics pollution. In this paper, combining with microplastic pollution research progress at home and abroad, the current situation of microplastic pollution, the methods for sampling, pretreatment, and qualitative and quantitative analysis of microplastics in environmental samples are introduced, and the advantages and disadvantages of current detection methods and their respective application range are summarized, finally, the direction of further research is pointed out.
  • 加载中
    1. [1]

      Tsang Y Y, Mak C W, Liebich C, et al. Marine Pollut. Bull., 2017, 115(1-2): 20~28. 

    2. [2]

      Jabeen K, Li B, Chen Q, et al. Chemosphere, 2018, 213: 323~332. 

    3. [3]

      Herzke D, Anker-Nilssen T, Nøst T H, et al. Environ. Sci. Technol., 2016, 50(4): 1924~1933. 

    4. [4]

      Chen Q, Zhang H, Allgeier A, et al. J. Hazard. Mater., 2019, 364: 82~90.

    5. [5]

       

    6. [6]

       

    7. [7]

      Guerranti C, Martellini T, Perra G, et al. Environ. Toxicol. Pharm., 2019, 68: 75~79. 

    8. [8]

      Song Y K, Hong S H, Jang M, et al. Environ. Sci. Technol., 2017, 51(8): 4368~4376. 

    9. [9]

      Ding J, Zhang S, Razanajatovo R M, et al. Environ. Pollut., 2018, 238: 1~9. 

    10. [10]

      Qiao R, Sheng C, Lu Y, et al. Sci. Total Environ., 2019, 662: 246~253. 

    11. [11]

       

    12. [12]

      Steer M, Cole M, Thompson R C, et al. Environ. Pollut., 2017, 226: 250~259. 

    13. [13]

      Ma J, Zhao J, Zhu Z, et al. Environ. Pollut., 2019, 254: 113104. 

    14. [14]

      Liu G, Zhu Z, Yang Y, et al. Environ. Pollut., 2019, 246: 26~33. 

    15. [15]

       

    16. [16]

       

    17. [17]

      Baldwin A K, Corsi S R, Mason S A. Environ. Sci. Technol., 2016, 50(19): 10377~10385. 

    18. [18]

      Reisser J, Slat B, Noble K, et al. Biogeosciences, 2015, 12(4): 1249~1256. 

    19. [19]

      Su L, Xue Y, Li L, et al. Environ. Pollut., 2016, 216: 711~719. 

    20. [20]

      Zhang K, Xiong X, Hu H, et al. Environ. Sci. Technol., 2017, 51(7): 3794~3801. 

    21. [21]

      Mani T, Hauk A, Walter U, et al. Sci. Rep., 2016, 5(1): 17988. 

    22. [22]

      Faure F, Saini C, Potter G, et al. Environ. Sci. Pollut. Res., 2015, 22(16): 12190~12197. 

    23. [23]

      Dris R, Gasperi J, Rocher V, et al. Environ. Chem., 2015, 12(5): 592~599. 

    24. [24]

      Baldwin A K, Corsi S R, Mason S A. Environ. Sci. Technol., 2016, 50(19): 10377~10385. 

    25. [25]

      Hossain M S, Rahman M S, Uddin M N, et al. Chemosphere. 2020, 238: 124688. 

    26. [26]

      Hossain M S, Sobhan F, Uddin M N, et al. Sci. Total Environ., 2019, 690: 821~830.

    27. [27]

      Han X, Lu X, Vogt R D. Environ. Pollut., 2019, 254: 113009.

    28. [28]

      Qiu Q, Tan Z, Wang J, et al. Estuar. Coast. Shelf Sci., 2016, 176: 102~109. 

    29. [29]

      Dehaut A, Cassone A, Frère L, et al. Environ. Pollut., 2016, 215: 223~233. 

    30. [30]

    31. [31]

      Courtene-Jones W, Quinn B, Murphy F, et al. Anal. Methods, 2017, 9(9): 1437~1445. 

    32. [32]

      Zhao S, Danley M, Ward J E, et al. Anal. Methods, 2017, 9(9): 1470~1478. 

    33. [33]

      Mai L, Bao L, Shi L, et al. Environ. Pollut., 2018, 241: 834~840. 

    34. [34]

      Yang D, Shi H, Li L, et al. Environ. Sci. Technol., 2015, 49(22): 13622~13627. 

    35. [35]

      Rodrigues M O, Gonçalves A M M, Gonçalves F J M, et al. Ecol. Indicat., 2018, 89: 488~495.

    36. [36]

      Hanvey J S, Lewis P J, Lavers J L, et al. Anal. Methods, 2017, 9(9): 1369~1383. 

    37. [37]

      Phuong N N, Poirier L, Lagarde F, et al. Environ. Pollut., 2018, 243: 228~237. 

    38. [38]

      Gago J, Galgani F, Maes T, et al. Front. Marine Sci., 2016, 3: 219.

    39. [39]

      Wesch C, Bredimus K, Paulus M, et al. Environ. Pollut., 2016, 218: 1200~1208. 

    40. [40]

      Löder M G J, Kuczera M, Mintenig S, et al. Environ. Chem., 2015, 12(5): 563. 

    41. [41]

       

    42. [42]

      Oßmann B E, Sarau G, Holtmannspötter H, et al. Water Res., 2018, 141: 307~316. 

    43. [43]

      Araujo C F, Nolasco M M, Ribeiro A M P, et al. Water Res., 2018, 142: 426~440. 

    44. [44]

      Oßmann B E, Sarau G, Schmitt S W, et al. Anal. Bioanal. Chem., 2017, 409(16): 4099~4109. 

    45. [45]

      Peters C A, Hendrickson E, Minor E C, et al. Marine Pollut. Bull., 2018, 137: 91~95.

    46. [46]

      Hermabessiere L, Himber C, Boricaud B, et al. Anal. Bioanal. Chem., 2018, 410(25): 6663~6676. 

    47. [47]

      Elert A M, Becker R, Duemichen E, et al. Environ. Pollut., 2017, 231: 1256~1264. 

    48. [48]

      Castañeda R A, Avlijas S, Simard M A, et al. Can. J. Fish. Aquat. Sci., 2014, 71(12): 1767~1771. 

    49. [49]

      Majewsky M, Bitter H, Eiche E, et al. Sci. Total Environ., 2016, 568: 507~511. 

    50. [50]

      Chialanza M R, Sierra I, Pérez Parada A, et al. Environ. Sci. Pollut. Res., 2018, 25(17): 16767~16775.

    51. [51]

      Nel H A, Dalu T, Wasserman R J, et al. Sci. Total Environ., 2019, 655: 567~570. 

    52. [52]

      Erni-Cassola G, Gibson M I, Thompson R C, et al. Environ. Sci. Technol., 2017, 51(23): 13641~13648. 

    53. [53]

      Ter Halle A, Jeanneau L, Martignac M, et al. Environ. Sci. Technol., 2017, 51(23): 13689~13697. 

    54. [54]

      Lehner R, Weder C, Petri-Fink A, et al. Environ. Sci. Technol., 2019, 53(4): 1748~1765.

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    3. [3]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    4. [4]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    5. [5]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    6. [6]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    11. [11]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    14. [14]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

Metrics
  • PDF Downloads(37)
  • Abstract views(1451)
  • HTML views(503)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return