Citation: Zhang Chong, Hou Yingqin, Lv Hua. The Secondary Structure Effect of Poly(α-Amino Acid)s in Materials Sciences and Biomedical Applications[J]. Chemistry, ;2020, 83(4): 343-348. shu

The Secondary Structure Effect of Poly(α-Amino Acid)s in Materials Sciences and Biomedical Applications

  • Corresponding author: Lv Hua, chemhualu@pku.edu.cn
  • Received Date: 17 December 2019
    Accepted Date: 8 January 2020

Figures(3)

  • Poly(α-amino acid)s (PαAAs), or synthetic polypeptides, are biodegradable and biocompatible polymers with unique secondary structures (e.g. α-helix, β-sheet, and random coil) resembling natural proteins. The secondary structures and their stimuli-responsive transitions endow PαAAs a wide range of applications for both material sciences and biomedicine. In this review, we give a brief summary of our recent progresses in the secondary structure effect of PαAAs with special focuses placed on antifouling surfaces, regulation of cellular uptake, and protein modification, the future development direction of the secondary structure of PαAAs was briefly predicted.
  • 加载中
    1. [1]

      Lu H, Wang J, Song Z, et al. Chem. Commun., 2014, 50(2):139~155. 

    2. [2]

      Deming T J. Chem. Rev., 2016, 116(3):786~808. 

    3. [3]

      Shen Y, Fu X, Fu W, et al. Chem. Soc. Rev., 2015, 44(3):612~622. 

    4. [4]

      Deng C, Wu J, Cheng R, et al. Prog. Polym. Sci., 2014, 39(2):330~364. 

    5. [5]

      Huang J, Heise A. Chem. Soc. Rev., 2013, 42(17):7373~7390. 

    6. [6]

      Hadjichristidis N, Iatrou H, Pitsikalis M, et al. Chem. Rev., 2009, 109(11):5528~5578. 

    7. [7]

      Song Z, Tan Z, Cheng J. Macromolecules, 2019, 52(22):8521~8539. 

    8. [8]

      Yuan J, Sun Y, Wang J, et al. Biomacromolecules, 2016, 17(3):891~896. 

    9. [9]

      Wu Y, Zhang D, Ma P, et al. Nat. Commun., 2018, 9:5297. 

    10. [10]

      Niwa M, Morikawa M, Higashi N. Angew. Chem. Int. Ed., 2000, 39(5):960~963. 

    11. [11]

      Rodríguez-HernándezJ, Lecommandoux S. J. Am. Chem. Soc., 2005, 127(7):2026~2027. 

    12. [12]

      Kramer J R, Deming T J. J. Am. Chem. Soc., 2012, 134(9):4112~4115. 

    13. [13]

      Cheng Y, He C, Xiao C, et al. Biomacromolecules, 2012, 13(7):2053~2059. 

    14. [14]

      Chen C, Wang Z, Li Z. Biomacromolecules, 2011, 12(8):2859~2863. 

    15. [15]

      Wang S, He W, Xiao C, et al. Biomacromolecules, 2019, 20(4):1655~1666. 

    16. [16]

      Baumgartner R, Fu H, Song Z, et al. Nat. Chem., 2017, 9:614~622. 

    17. [17]

      Chen C, Lan J, Li Y, et al. Chem. Mater., 2019, 10.1021/acs. chemmater. 9b04160.

    18. [18]

      Yin L, Tang H, Kim K H, et al. Angew. Chem. Int. Ed., 2013, 52(35):9182~9186. 

    19. [19]

      Tang H, Yin L, Kim K H, et al. Chem. Sci., 2013, 4(10):3839~3844. 

    20. [20]

      Xiong M, Han Z, Song Z, et al. Angew. Chem. Int. Ed., 2017, 56(36):10826~10829. 

    21. [21]

      Mochida Y, Cabral H, Miura Y, et al. ACS Nano, 2014, 8(7):6724~6738. 

    22. [22]

      Ma Y, Shen Y, Li Z. Mater. Chem. Front., 2017, 1(5):846~851. 

    23. [23]

      Bonduelle C. Polym. Chem., 2018, 9(13):1517~1529. 

    24. [24]

      Song Z, Fu H, Wang R, et al. Chem. Soc. Rev., 2018, 47(19):7401~7425. 

    25. [25]

      Cai C, Lin J, Lu Y, et al. Chem. Soc. Rev., 2016, 45(21):5985~6012. 

    26. [26]

      Song Z, Han Z, Lv S, et al. Chem. Soc. Rev., 2017, 46(21):6570~6599. 

    27. [27]

      Banerjee I, Pangule R C, Kane R S. Adv. Mater., 2011, 23(6):690~718. 

    28. [28]

      Blaszykowski C, Sheikh S, Thompson M. Chem. Soc. Rev., 2012, 41(17):5599~5612. 

    29. [29]

      Knop K, Hoogenboom R, Fischer D, et al. Angew. Chem. Int. Ed., 2010, 49(36):6288~6308. 

    30. [30]

      Gillich T, Benetti E M, Rakhmatullina E, et al. J. Am. Chem. Soc., 2011, 133(28):10940~10950.

    31. [31]

      Li L, Yan B, Zhang L, et al. Chem. Commun., 2015, 51(87):15780~15783. 

    32. [32]

      Morgese G, Trachsel L, Romio M, et al. Angew. Chem. Int. Ed., 2016, 55(50):15583~15588. 

    33. [33]

      Zhang C, Yuan J, Lu J, et al. Biomaterials, 2018, 178:728~737. 

    34. [34]

      Saha K, Agasti S S, Kim C, et al. Chem. Rev., 2012, 112(5):2739~2779. 

    35. [35]

      Kim D, Kim J, Park Y I, et al. ACS Cent. Sci., 2018, 4(3):324~336. 

    36. [36]

      Banik B L, Fattahi P, Brown J L. Polymeric Nanoparticles:The Future of Nanomedicine WIREs Nanomed. Nanobiotechnol., 2016, 8:271~299. 

    37. [37]

       

    38. [38]

      Ding Y, Du C, Qian J, et al. Nano. Lett., 2019, 19(7):4362~4370. 

    39. [39]

    40. [40]

      Behzadi S, Serpooshan V, Tao W, et al. Chem. Soc. Rev., 2017, 46(14):4218~4244. 

    41. [41]

      Zhao F, Zhao Y, Liu Y, et al. Small, 2011, 7(10):1322~1337. 

    42. [42]

      Jiang W, Kim B Y S, Rutka J T, et al. Nat. Nanotechnol., 2008, 3:145~150. 

    43. [43]

      Li Y, Kröger M, Liu W K. Nanoscale, 2015, 7(40):16631~16646. 

    44. [44]

      Hühn D, Kantner K, Geidel C, et al. ACS Nano, 2013, 7(4):3253~3263. 

    45. [45]

      Sun J, Zhang L, Wang J, et al. Adv. Mater., 2015, 27(8):1402~1407. 

    46. [46]

      Li Y, Chen X, Gu N. J. Phys. Chem. B, 2008, 112(51):16647~16653. 

    47. [47]

      Lindgren M, Hällbrink M, Prochiantz A, et al. Trends Pharmacol. Sci., 2000, 21(3):99~103. 

    48. [48]

      Zhang C, Lu J, Tian F, et al. Nano Res., 2019, 12(4):889~896. 

    49. [49]

      Hou Y, Lu H. Bioconj. Chem., 2019, 30(6):1604~1616. 

    50. [50]

      Abu LilaA S, Kiwada H, Ishida T. J. Control. Release, 2013, 172(1):38~47. 

    51. [51]

      Zhang P, Sun F, Liu S, et al. J. Control. Release, 2016, 244(28):184~193.

    52. [52]

       

    53. [53]

      Hou Y, Zhou Y, Wang H, et al. J. Am. Chem. Soc., 2018, 140(3):1170~1178. 

    54. [54]

      Hou Y, Yuan J, Zhou Y, et al. J. Am. Chem. Soc., 2016, 138(34):10995~11000. 

    55. [55]

      Hou Y, Zhou Y, Wang H, et al. ACS Cent. Sci., 2019, 5(2):229~236. 

    56. [56]

      Wu G, Ge C, Liu X, et al. Chem. Commun., 2019, 55(54):7860~7863. 

    57. [57]

      Yuan J, Zhang Y, Sun Y, et al. Biomacromolecules, 2018, 19(6):2089~2097. 

    58. [58]

      Xiong W, Fu X, Wan Y, et al. Polym. Chem., 2016, 7(41):6375~6382. 

    59. [59]

      Gharakhanian E G, Bahrun E, Deming T J. J. Am. Chem. Soc. 2019, 141(37):14530~14533. 

    60. [60]

      Liu H, Wang R, Wei J, et al. J. Am. Chem. Soc. 2018, 140(21):6604~6610 

    61. [61]

      Grazon C, Salas-Ambrosio P, Ibarboure E, et al. Angew. Chem. Int. Ed., 2020, 59(2):622~626. 

    62. [62]

      Zhao W, Lv Y, Li J, et al. Nat. Commun., 2019, 10:3590. 

    63. [63]

      Zhao L, Wang X, Sun L, et al. Polym. Chem., 2019, 10(38):5206~5214. 

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(50)
  • Abstract views(2279)
  • HTML views(1010)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return