Citation: WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1341-1348. shu

Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores

  • Corresponding author: CUI Hong-you, cuihy@sdut.edu.cn YI Wei-ming, yiweiming@sdut.edu.cn
  • Received Date: 4 July 2016
    Revised Date: 26 July 2016

    Fund Project: The project was supported by the National Natural Science Foundations of China 21476132The project was supported by the National Natural Science Foundations of China 51536009The project was supported by the National Natural Science Foundations of China 51276103

Figures(7)

  • Sulfonated carbons with hierarchically ordered pores (SCHOP) were prepared by means of dual template self-assembly, carbonization, HF etching, and sulfonation. The effect of carbonization temperature on microstructure of the prepared carbons as well as the SCHOPs were surveyed at 500-700℃. Using fructose dehydration to 5-hydroxymethylfurfural as a probe reaction, catalytic performance of SCHOPs was examined. The results show that SCHOP-500 carbonized at 500℃ exhibits the highest catalytic activity. SEM and TEM characterization as well as N2 adsorption desorption show that all of the SCHOPs possess hierarchically ordered macropores and mesopores, but high carbonization temperature damages the regularity of carbon materials slightly. FT-IR, EDS and -SO3H determination confirm that sulfonic acid group could be successfully introduced to carbon materials by sulfonation. However, high carbonization temperature lowers aromaticity of the carbon materials, and as a result leading to low sulfonation degree. Under the catalysis of SCHOP-500, as high as 93.4% of 5-HMF yield with 96.1% fructose conversion rate is achieved after reacting at 130℃ for 20 min, indicating that SCHOP-500 is a highly effective and efficient solid acid catalyst.
  • 加载中
    1. [1]

      CAI H, LI C, WANG A, ZHANG T. Biomass into chemicals:One-pot production of furan-based diols from carbohydrates via tandem reactions[J]. Catal Today, 2014,234(10):59-65.  

    2. [2]

      KAZI F K, PATEL A D, SERRANO-RUIZ J C, DUMESIC J A, ANEX R P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes[J]. Chem Eng J, 2011,169(1/3):329-338.  

    3. [3]

      RAS E J, MAISULS S, HAESAKKERS P, GRUTER G J, ROTHENBERG G. Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts[J]. Adv Synth Catal, 2009,351(18):3175-3185. doi: 10.1002/adsc.v351:18

    4. [4]

      TONG X, MA Y, LI Y. Biomass into chemicals:Conversion of sugars to furan derivatives by catalytic processes[J]. Appl Catal A:Gen, 2010,385(1/2):1-13.  

    5. [5]

      SCHUETTE H A, THOMAS R W. Normal valerolaction. Ⅲ. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide[J]. Chem Eur J, 2012,18(17):5256-5260. doi: 10.1002/chem.v18.17

    6. [6]

      PEDERSEN A T, RINGBORG R, GROTKJÆR T, PEDERSEN S, WOODLEY J M. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures[J]. Chem Eng J, 2015,273(1):455-464.  

    7. [7]

      ZHANG J, YU X, ZOU F, ZHONG Y, DU N, HUANG X. Room-temperature ionic liquid system converting fructose into 5-hydroxymethylfurfural in high efficiency[J]. ACS Sustainable Chem Eng, 2015,3(12):3338-3345. doi: 10.1021/acssuschemeng.5b01015

    8. [8]

      CHOUDHARY V, MUSHRIF S H, HO C, ANDERKO A, NIKOLAKIS V, MARINKOVIC N S, FRENKEL A I, SANDLER S I, VLACHOS D G. Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. J Am Chem Soc, 2013,135(10):3997-4006. doi: 10.1021/ja3122763

    9. [9]

      KRUGER J S, NIKOLAKIS V, VLACHOS D G. Aqueous-phase fructose dehydration using Brønsted acid zeolites:Catalytic activity of dissolved aluminosilicate species[J]. Appl Catal A:Gen, 2014,469(2):116-123.  

    10. [10]

      SAMPATH G, KANNAN S. Fructose dehydration to 5-hydroxymethylfurfural:Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies[J]. Catal Commun, 2013,37(13):41-44.

    11. [11]

      WANG F, WU H Z, LIU C L, YANG R Z, DONG W S. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J]. Carbohydr Res, 2013,368(10):78-83.  

    12. [12]

      ZAREYEE D, ALIZADEH P, GHANDALI M S, KHALILZADEH M A. Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon[J]. Chem Pap, 2013,67(7):713-721.  

    13. [13]

      GALHARDO T S, SIMONE N, GONCALVES M, FIGUEIREDO F C A, MANDELLI D, CARVALHO W A. Preparation of sulfonated carbons from rice husk and their application in catalytic conversion of glycerol[J]. ACS Sustainable Chem Eng, 2013,1(11):1381-1389. doi: 10.1021/sc400117t

    14. [14]

      YAN L, LIU N, WANG Y, MACHIDA H, QI X. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst[J]. Bioresour Technol, 2014,173(22):462-466.  

    15. [15]

      KARIMI B, MIRZAEI H M, BEHZADNIA H, VALI H. Novel ordered mesoporous carbon based sulfonic acid as an efficient catalyst in the selective dehydration of fructose into 5-HMF:The role of solvent and surface chemistry[J]. ACS Appl Mater Inter, 2015,7(34):19050-19059. doi: 10.1021/acsami.5b03985

    16. [16]

      HU L, TANG X, WU Z, LIN L, XU J, XU N, DAI B. Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide[J]. Chem Eng J, 2015,263(2):299-308.  

    17. [17]

      ZHAO J, ZHOU C, HE C, DAI Y, JIA X, YANG Y. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts[J]. Catal Today, 2015,264(4):123-130.  

    18. [18]

      ORDOMSKY V V, SCHOUTEN J C, SCHAAF J V D, NIJHUIS T A. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions[J]. Chem Eng J, 2012,207-208(5):218-225.  

    19. [19]

      XIA Y, YANG Z, GOU X, ZHU Y. A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities[J]. Int J Hydrogen Energy, 2013,38(12):5039-5052. doi: 10.1016/j.ijhydene.2013.02.037

    20. [20]

      YUN Y S, PARK D J, MIN J J, JIN H J. 3-D ordered bimodal porous carbon/nickel oxide hybrid electrodes for supercapacitors[J]. Synth Met, 2013,177(8):105-109.  

    21. [21]

      ZHANG T, ZHANG Q, GE J, GOEBL J, SUN M, YAN Y, LIU Y S, CHANG C, GUO J, YIN Y. A self-templated route to hollow silica microspheres[J]. J Phys Chem C, 2008,113(8):3168-3175.  

    22. [22]

      ZHENG F C, CHEN Q W, HU L, YAN N, KONG X K. Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction[J]. Dalton Trans, 2014,43(3):1220-1227. doi: 10.1039/C3DT52098F

    23. [23]

      ZHAO Q, WANG X, LIU J, WANG H, ZHANG Y, GAO J, LU Q, ZHOU H. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors[J]. Electrochim Acta, 2015,154(4):110-118.  

    24. [24]

      XUE C, TU B, ZHAO D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly[J]. Nano Res, 2009,2(3):242-253. doi: 10.1007/s12274-009-9022-y

    25. [25]

      ZHOU W, YOSHINO M, HIDETOSHI KITA H, OKAMOTO K. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group[J]. Ind Eng Chem Res, 2001,40(22):4801-4807. doi: 10.1021/ie010402v

    26. [26]

      CEPEDA-JIMENEZ C M, PASTOR-BLAS M M, FERRANDIZ-GOMEZ T P, MARTIN-MARTINNEZ J M. Influence of the styrene content of thermoplastic styrene-butadiene rubbers in the effectiveness of the treatment with sulfuric acid[J]. Int J Adhes Adhes, 2001,21(2):161-172. doi: 10.1016/S0143-7496(00)00048-8

    27. [27]

      OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HARA M, HAYASHI S. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006,18(13):3039-3045. doi: 10.1021/cm0605623

    28. [28]

      SHIMIZU K I, UOZUMI R, SATSUMA A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods[J]. Catal Commun, 2009,10(14):1849-1853. doi: 10.1016/j.catcom.2009.06.012

    29. [29]

      AMARASEKARA A S, WILLIAMS L T D, EBEDE C C. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C:An NMR study[J]. Carbohydr Res, 2008,343(18):3021-3024. doi: 10.1016/j.carres.2008.09.008

  • 加载中
    1. [1]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    11. [11]

      Linlin Wang Yanqin Chen Feng Li Ruikang Tan . Practical Exploration of Graded Teaching in the Public Organic Chemistry Course for Agricultural Science Students. University Chemistry, 2025, 40(7): 48-54. doi: 10.12461/PKU.DXHX202409054

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(5)
  • Abstract views(2749)
  • HTML views(1191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return