Citation: CHEN Mao-sen, SONG Hua, LI Feng, CHEN Yan-guang, ZHANG Jian. Effect of preparation method on the structure of rare earth metal Y modified Ni2P catalysts and its HDS performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(2): 213-219. shu

Effect of preparation method on the structure of rare earth metal Y modified Ni2P catalysts and its HDS performance

  • Corresponding author: SONG Hua, songhua2004@sina.com
  • Received Date: 27 September 2016
    Revised Date: 7 November 2016

    Fund Project: the General Program of Education Department of Heilongjiang Province  12541060the Natural Science Foundation of Heilongjiang Province of China  ZD201201National Natural Science Foundation of China  21276048

Figures(5)

  • The yttrium (Y) modified unsupported Yx-Ni2P catalysts were prepared by one step method and stepwise method (x refers to mol ratio of Y to Ni), respectively.The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption specific surface area measurements (BET), CO uptake and X-ray photoelectron spectroscopy (XPS).The effects of preparation methods on thehydrodesulfurization (HDS) property of the catalysts were investigated by using dibenzothiophene (DBT) as the model compound.The results show that the addition of Y can suppress the formation of Ni5P4 phase and thus promote the formation of active Ni2P phase.The addition of Y can dramatically increase the surface area and pore volume, effectively improve the HDS activity of nickel phosphide catalyst.The Yx-Ni2P catalysts prepared by these two methods with Y/Ni mol ratio of 0.10 exhibited the highest HDS activity.As compared to the stepwise method, the one step method which obtained catalysts possessed a larger specific surface area with high pore volume, a lower surface P/Ni mol ratio, a larger CO uptake and more exposed active Ni sites as compared to stepwise method.As a result, it showed a higher HDS activity.At a temperature of 340℃, a pressure of 3.0 MPa, a H2/oil volume ratio of 700 and a weight hourly space velocity (WHSV) of 1.5 h-1, the conversion of DBT over Y0.10-Ni2P catalyst prepared by one step method reached 97.7%, which was an increase of 5.4% comparing with the Y0.10-Ni2P catalyst prepared by stepwise method (92.3%).
  • 加载中
    1. [1]

      YU Qi, SONG Hua, SONG Hua-lin, WANG Jian, JIANG Nan, LI Feng, CHEN Yan-guang. Effect of reduction temperature on the performance of Ni2P/Ti-MCM-41 catalyst in hydrodesulfurization[J]. J Fuel Chem Technol, 2016,44(8):970-976.  

    2. [2]

      SONG Hua, DAI Min, SONG Hua-lin. Ni2P catalyst for hydrodesulfurization[J]. Prog Chem, 2012,24(5):43-47.

    3. [3]

      WANG X, CLARK P, OYAMA S T. Synthesis, characterization and hydrotreating activity of several iron group transition metal phosphides[J]. J Catal, 2002,208(2):321-331. doi: 10.1006/jcat.2002.3604

    4. [4]

      OYAMA S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides[J]. J Catal, 2003,216(1/2):343-352.  

    5. [5]

      KORANYI T I, VIT Z, NAGY J B. Support and pretreatment effects on the hydrotreating activity of SBA-15 and CMK-5 supported nickel phosphide catalysts[J]. Catal Today, 2008,130(1):80-85. doi: 10.1016/j.cattod.2007.09.004

    6. [6]

      SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J]. J Catal, 2003,215(2):208-219. doi: 10.1016/S0021-9517(03)00018-6

    7. [7]

      ZHAO H Y, OYAMA S T, FREUND H J, WLODARCZYK R, SIERKA M. Nature of active sites in Ni2P hydrotreating catalysts as probed by iron substitution[J]. Appl Catal B:Environ, 2015,164:204-216. doi: 10.1016/j.apcatb.2014.09.010

    8. [8]

      KORANYI T I. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in thiophene hydrodesulfurization[J]. Appl Catal A:Gen, 2003,239(1/2):253-267.

    9. [9]

      HAYAO I, AKIRA O, EITETSU H, SUSUMU T. Rare earth metals as hydrogenation catalysts of unsaturated hydrocarbons[J]. J Catal, 1985,96:139-145. doi: 10.1016/0021-9517(85)90367-7

    10. [10]

      MAZZOCCHIA C, GRONCHI P, KADDOURI A, TEMPESTI E, ZANDERIGHI L, KIENNEMANN A. Hydrogenation of CO over Rh/SiO2-CeO2 catalysts:Kinetic evidences[J]. J Mol Catal A:Chem, 2001,165(1/2):219-230.  

    11. [11]

      HUO Xiao-min, LU Qing-jie, SONG wei, SHI Lei. The promoter function of rare earth compounds in catalytic reactions[J]. Chem Online, 2006,69(1)w51.

    12. [12]

      PHONTHAMMACHAI N, RUMRUANGWONG M, GULARI E, JAMIESON A M, JITKARNKA S, WONGKASEMJIT S. Synthesis and rheological properties of mesoporous nanocrystalline CeO2 via sol-gel process[J]. Colloids Surf A, 2004,247:61-68. doi: 10.1016/j.colsurfa.2004.08.030

    13. [13]

      WEI Ni, ZENG Peng-hui, JI Sheng-fu, ZHAO Peng-fei, LIU Hui, LI Cheng-yue. Effect of lanthanum promoter on structure and hydrodesulfurization performance of La-Ni2P/SBA-15 catalysts[J]. J Rare Earths, 2011,29(3):310-315.

    14. [14]

      SUN Z C, XIANG L, WANG A J, YAO W, YONG Y C. The effect of CeO2 on the hydrodenitrogenation performance of bulk Ni2P[J]. Top Catal, 2012,55(14):1010-1021.

    15. [15]

      SONG Hua, ZHANG Fu-yong, XU Xiao-wei, SONG Hua-lin, LI Feng. Effect of Pr and Ce on the activity of Ni2P catalyst prepared by low temperature reduction in hydrodesulphurization[J]. J Fuel Chem Technol, 2015,43(9):1128-1133.  

    16. [16]

      SONG H, XU X W, SONG H L, JIANG N, ZHANG F Y. The effect of neodymium content on dibenzothiophene HDS performance over a bulk Ni2P catalyst[J]. Catal Commun, 2015,63:52-55.  

    17. [17]

      LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004,108(30):10930-10941. doi: 10.1021/jp037101e

    18. [18]

      OYAMA S T, WANG X, LEE Y K, BANDO K, REQUEJO F G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002,210(1):207-217. doi: 10.1006/jcat.2002.3681

    19. [19]

      CHEN T, YANG B L, LI S S, WANG K L, JIANG X D, ZHANG Y, HE G W. Ni2P catalysts supported on titania-modified alumina for the hydrodesulfurization of dibenzothiophene[J]. Ind Eng Chem Res, 2011,50:11043-11048. doi: 10.1021/ie201188v

    20. [20]

      ELICHE-QUESADA D, MERIDA-ROBLES J, MAIRELES-TORRES P, RODRIGUEZ-CASTELLON E, BUSCA G, FINOCCHIO E, JIMENEZ-LOPEZ A. Effects of preparation method and sulfur poisoning on the hydrogenation and ring opening of tetralin on NiW/zirconium-dopedmesoporous silica catalysts[J]. J Catal, 2003,220(2):457-467. doi: 10.1016/S0021-9517(03)00271-9

    21. [21]

      KUHN J N, LAKSHMINARAYANAN N, OZKAN U S. Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets[J]. J Mol Catal A:Chem, 2008,282(1/2):9-21.  

    22. [22]

      GUO Ya-nan, ZENG Peng-hui, JI Sheng-fu, WEI Ni, LIU Hui, LI Cheng-yue. Effect of Mo promoter content on performance of Mo-Ni2P/SBA-15/cordierite monolithic catalyst for hydrodesulfurization[J]. Chin J Catal, 2010,31(3):329-334.

    23. [23]

      SONG H, WANG J, WANG Z D, SONG H L, LI F, JIN Z S. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst[J]. J Catal, 2014,311:257-265. doi: 10.1016/j.jcat.2013.11.021

    24. [24]

      CECILIA J A, INFANTES-MOLINA A, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009,263(1):4-15. doi: 10.1016/j.jcat.2009.02.013

    25. [25]

      OYAMA S T, LEE Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT[J]. J Catal, 2008,258(2):393-400. doi: 10.1016/j.jcat.2008.06.023

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    8. [8]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(926)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return